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1-Introduction
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| Id fundamental theory M-theory — 5d brane-world theory: Low-energy
theory in 4d, is determined by the charges of the boundary branes
(cv1, ap) and the total bulk brane charge .



Question: Is “fundamental” physics in 4d unique?

* No, all choices are allowed, we just happen to live in a Universe
with one specific realization.

* Yes, there may be a dynamical mechanism that selects a single
“vacuum”

Can the number of branes in the bulk change dynamically? Is
topology change allowed?

We investigate a simple process, the collision of a bulk brane with a
boundary brane.



2-Scalar field model of branes

To describe brane dynamics: model branes as kinks of an auxiliary
Z scalar field theory.

Simplified model with single scalar field: S = Spik + Spa

S = /dt/idx{% (g—f)g - (g—ﬁ)z - V(aﬁ)} , $(z) = o(—2)

Spa = — /dt /i dx{25(:z: _0)W(6) — 26(x — L)W(aﬁ)}

: : D?°¢p  0%¢
Equation of motion;: ¥ — Z ¥ _ \// : L
q atz axz V (d))ﬂ 24 E]Uﬂ [

Boundary condition: g(’b =W'(¢), ©=0,L
T



The brane potential is chosen so that the theory allows for BPS kink

solutions: W'(¢) = \/2V(¢)
The static kink obeys the BPS equation: ¢% = \/2V (¢k)

1 . o\
As an example we use a quartic potential: V(¢) = 5 9> (¢ — v?)?

e The core of the kink can
be place anywhere, both

inside and outside the
bulk.

e All these solutions have
the same energy £ = 0.

0.5/

—0.57]

0 0.2 0.4 0.6 0.8 1



F(2)

3-Moduli approximation

Introduce a coordinate Z(t) for the position of the core of the kink,
replace ¢x(x — Z(t)) into the original action —

Effective Lagrangian: £ = F(Z)Z?

4
Well inside the bulk ' = const,
- the kink moves with constant
3 1 velocity.
2.5/ | o The energy is conserved. As the
| kink approaches the boundary,
it accelerates, as F(Z) decreases.
L e As the kink crosses the
1f ; boundary, F(Z) — 0 and the
S kink accelerates to infinity in
finite time.
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5-Collision as perturbation of the vacuum

As Z — —oo ¢(x) is everywhere close to the vacuum v — use linear
perturbation around v.

e Define ¢ = v + x. Linearized equation of motion and boundary condition:

Y=x"—m’x, z cl0, L[; X' =m|x|, t=0,L m = gu

e As the field goes above the vacuum, x(¢,0) > 0 and the boundary condition
is X' = mx . The corresponding mode basis is:

Xk o< e™? {cos(k:z:) + % sin(k:r:)]

* When the field oscillates back below ¢, the boundary condition changes and
there is a new basis of solutions:

X o< et [cos(kat) — % sin(k:r:)] Xo = (a+bt)e™™*



The zero mode grows into the incoming kink— the velocity of the reflected
kink 1s proportional to the amplitude of the zero mode component of the
field. We calculate:

o Reflection coefficient:

Zy 16m® [ k2
o b / dk— cos(wtg)
Zi ™ Jo w?

R

e Reflection time:

[oe] kQ
/ dk— sin(wtg) = 0
0

w;)

e After rescaling the integrals can be evaluated:
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R =0.63
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6-Generic topology change

The kink is not absorbed by the boundary — is topology change ruled out?

On the contrary:

* Any configuration near the vacuum will be likely to excite the zero mode.

* Kinks can be extracted from the boundary very easily. Apart from the final
kinetic energy, it costs no energy to produce a kink.

 Topology change is very likely!

For a potential with multiple vacuua, increasing numbers
of kinks can be produced. Ex: Sine-Gordon



7-Long time evolution for kink collision
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8-Conclusions

In a boundary collision the brane is always reflected inelastically.
The fraction of energy lost in the collision i1s model independent.

Topology change 1s a natural process, in fact it is hard to avoid!

Conjecture: For long times, a brane gas will from, its density limited
by the repulsive kink-kink interaction. The value of the final density
should be related to the energy of the initial condition — a well-
defined final state is singled-out from the general initial field
configurations.



