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Introduction

The Issue

In de Sitter space, the particle scpectra inferred from the
response of an Unruh detector and from the stress-energy tensor
disagree.

Explain why and how the detector nonetheless knows about the
energy density.
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Scalar Field in Expanding Background
Some Basics and Conventions

Spatially flat, homogeneous background in conformal
coordinates: gµν = a2(η)diag(1,−1,−1,−1)

De Sitter space: a(η) = − 1
Hη , ηε]−∞, 0[

√
−gL =

√
−g

(
1
2gµν∂µφ∂νφ− 1

2m2φ2
)

Klein-Gordon equation for mode with comoving momentum k:(
∂2

η +
(
k2 + a2m2

)
− a′′

a

)
ϕ(k, η) = 0 , ϕ = aφ , ′ ≡ d/dη

Solution for m = 0: ϕ(k, η) = 1√
2k

(
1− i

kη

)
e−ikη
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Particle Production: Mode Mixing
Parker 1969

Field operator

ϕ(x) =

∫
d3k

(2π)3

(
eik·xϕ(k, η)a(k) + e−ik·xϕ∗(k, η)a†(k)

)
Nondiagonal Hamiltonian

H(η) =
1
2

∫
d3k

(2π)3

{
Ω(k, η)(a(k)a†(k)+a†(k)a(k))+(Λ(k, η)a(k)a(−k)+h.c.)

}
where

Ω(k, η) = |ϕ′(k, η)− (a′/a)ϕ(k, η)|2 + ω2(k, η) |ϕ(k, η)|2

Λ(k, η) =
(
ϕ′(k, η)− a′

a
ϕ(k, η)

)2
+ ω2(k, η)ϕ2(k, η)

ω2 = k2 + m2
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Mode Mixing

Bogolyubov transformation(
â(k)

â†(−k)

)
=

(
α(k) β∗(k)
β(k) α∗(k)

) (
a(k)

a†(−k)

)
with the norm |α(k)|2− |β(k)|2 = 1
Diagonal Hamiltonian

H(η) =
1
2

∫
d3k

(2π)3
ω(k, η)(â(k)â†(k)+â†(k)â(k))

n(k) = 〈0|â†(k)â(k)|0〉 = |β(k)|2 =
Ω(k)

2ω(k)
− 1

2
= a2

(
H
2k

)2

Intuitively expected result: mode energy density divided by the
individual particle energy, minus the vacuum contribution
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Adiabatic Expansion

Limited Applicability of Mode Mixing Picture

Note: β nonetheless oscillates ∝ e2ikη

Also true for more general cases where for the WKB ansatz

ϕ(k, η)=α(k)
(
2W(k, η)

)− 1
2 e−i

ηR
dη′W(k,η′)+β(k)

(
2W(k, η)

)− 1
2 ei

ηR
dη′W(k,η′)

one can adiabatically expand

W(0)2
= ω2

W(2)2
= ω2− (1− 6ξ)

a′′

a
+

3
4

W(0)′2

W(0)2 −
1
2

W(0)′′

W(0)

. . .
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Energy Density in de Sitter Space

Hamiltonian mode energy density

Ω(k, η) = k +
1

2kη2

Energy density component from the stress-energy tensor

% = 〈0|T0
0(x)|0〉 =

1
a4

∫
d3k

(2π)3

(
k +

1
2kη2

)
In addition to the quartic divergence of the cosmological term,
there is a square divergence, power law behaviour.

The square divergence can in principle be absorbed within
Newton’s constant G.
However, not clear how this may fit into renormalizing gravity.
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The Unruh Detector
Unruh 1976

An idealized device only characterized by its
energy levels, travels along trajectory x(τ) with
proper time τ , couples to scalar field via ĥφ

For simplicity assume that there are only two
energy levels E1 and E2. Level spacing
∆E = E2− E1, define h = 〈E2|ĥ|E1〉

∆E

ĥφ

P(τ) denotes probability for transition E1 → E2 after time τ has
elapsed.

Define F(τ) = P(τ)/|h|2.
Applying quantum mechanical rules of time-dependent
perturbation theory gives response function:

dF(∆E)

dτ
=

∫ ∞

−∞
d∆τei∆E∆τ 〈i|φ (x(−∆τ/2))φ (x(∆τ/2)) |i〉
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Test: Detector in Flat Space

Consider Minkowski space filled with ν(|k|) particles per mode

Can be described in mode-mixing picture by

ϕ(k, t) =
1√

2ω(k)

(
α(k)e−iω(k)t + β(k)eiω(k)t

)
with |β(k)|2 = ν(|k|), |α(k)|2 = ν(|k|) + 1 and β is constant in τ

Take infinite time limit t →∞ for the response function

dFflat(∆E)

dt
=

k∆E

2π
[ν(k∆E)ϑ(∆E) + (ν(k∆E) + 1) ϑ(−∆E)]

with k∆E ≡
√

(∆E)2−m2

First term in square brackets: particle absorption
Second term: spontaneous and induced emission
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Response in de Sitter Space
Gibbons and Hawking ’77, Higuchi ’86, BG and Prokopec ’04

Freely falling detector

dF(∆E)

dτ
=

∆E
2π

(
1 +

H2

∆E2

)
1

e(2π/H)∆E − 1
for ∆E 6= 0

Indicates an exponentially falling spectrum of particles.

Apparent contradiction with Parker’s result or the energy density
from Tµν .

Reason: Mode mixing picture is inappropriate, oscillating
Bogolyubov coefficient β
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The Principle of Detailed Balance

Detector in equilibrium:

R(E1 → E2) = R(E2 → E1)

The response function fulfills the relation

dF(∆E)

dτ
= e−β∆E dF(−∆E)

dτ

Introduce occupation numbers n(E1) and n(E2)

n(E1)
dP(E1 → E2)

dτ

(
1 + n(E2)

)
= n(E2)

dP(E2 → E1)

dτ

(
1 + n(E1)

)
=⇒

n(E2) =
1

eβ∆E − 1
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Is the Unruh Detector Blind to the Energy Density?

Question

What is the significance of the
power-law behaviour of the
energy density?



Introduction Scalar Field in Expaning Background Unruh Detector Lamb Shift Conclusions

Lamb Shift

What Happens to the Vacuum

Mode mixing picture is not appropriate to account for “particle
production” in the expanding background.

However, the amplitude of the modes grow.

In the functional picture, this corresponds to a growth of the
vacuum fluctuations, cf. the generation of cosmic perturbations.

And how the Detector Knows about it

Energy levels of an atom are sensitive to vacuum fluctuations.
The Lamb shift gives a correction at one loop order (a keystone
success of QED, H. Bethe 1947 ).

We are agnostic about the detector’s inner structure, however we
can think about it as a bound state with discrete energy levels.

Energy levels acquire corrections by vacuum fluctuations.
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Lamb Shift in Curved Spacetime

The detector’s ∆E is defined in flat space. This already includes
the infinite correction δEM due to Lamb shift.

However, we can compare a detector in flat and in curved space.

φk

∆E

k kΨ(φ ,η)

∆E in flat space already
includes the Lamb-shift
renormalization.

φk

k kΨ(φ ,η)

∆EC

Vacuum fluctuations grow due
to spacetime expansion. Lamb
shift yields a different
contribution. =⇒ ∆EC 6= ∆E

We can observe δE = δEC − δEM, note that δE is finite.
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Calculation of Lamb Shift

2nd Order Perturbation Theory

δEX =

∫
d3k

(2π)3

∣∣∣∫ d3k′

(2π)3 〈k′, E2|ĥa†(k)ϕ(k, η)|0, E1〉
∣∣∣2

∆E− Ω(k)

=

∫
d3k

(2π)3

∣∣h2
mn

∣∣ |ϕ(k, η)|2

∆E− Ω(k)

In Minkowski Space

δEm=0
M =

∫
d3k

(2π)3

1
2k

h2

∆E− k
=

h2

4π2
[−k−∆E log |∆E− k|]∞0
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Lamb Shift in de Sitter Space

δEm=0
dS =

∫
d3k

(2π)3

(
1
2k

+
H2

2k3

)
h2

∆E−
(

k + H2

k

)
=

h2

4π2

[
−k +

∆E2/4√
∆E2/4− H2

log

∣∣∣∣∣k−∆E/2 +
√

∆E2/4− H2

k−∆E/2−
√

∆E2/4− H2

∣∣∣∣∣
−∆E

2
log

∣∣∣∣∣ (k + ∆E/2)2

∆E2/4− H2
− 1

∣∣∣∣∣
]∞

0

The observable difference is finite:

δE = δEm=0
dS − δEm=0

M

=
h2

4π2

{
∆E log

∣∣∣∣ H
∆E

∣∣∣∣− ∆E2

4
√

∆E2/4− H2
log

∣∣∣∣∣∆E/2−
√

∆E2/4− H2

∆E/2 +
√

∆E2/4− H2

∣∣∣∣∣
}
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Lamb Shift in de Sitter Space

... and condenses considerably when expanded in H/∆E

δE =
h2

4π2

H2

∆E

(
−1− 2 log

∣∣∣∣ H
∆E

∣∣∣∣ + O

(
H

∆E

))

Remarks

Both, the amplitude |ϕ(k)| and the mode energy Ω(k) contribute
to the Lamb shift.

Lamb shift corresponds to a mixing of unperturbed detector
levels
=⇒ Can quantitatively compare with the detector in equilibrium
and the occupation numbers

Unruh detector sees the power-law behaviour, Lamb shift is more
important in the UV.
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Remarks

Similar behaviour for massive scalar in general
FLRW-spacetimes:

δE = δEFLRW − δEM

=
h2

4π2

{
− 5

12
1

∆E
a′′

a
− 1

2
1

∆E
a′2

a2
+

1− 6ξ

2
1

∆E
log

2∆E
m

a′′

a

−3π

16
m

∆E2

a′′

a
− 3π

32
m

∆E2

a′2

a2
+ O

(
m2

∆E3

)}

It is not clear whether the expression for the response function is
correct. LSZ reduction applicable?

Apparently related to particle self energies in de Sitter, which are
∝ H rather than ∝ exp(−H/µ), where µ is some mass scale.
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Lamb Shift in Rindler Space
Consider accelerated observer in D = 2 on trajectory x

Invariant acceleration: α =
[
(d2x/dτ2)2

] 1
2

Mode amplitude (λ corresponds to
√

k2 + m2)

|ϕλ(ξ = 0, τ)|2 =
1

2λ

1 + 1
2

m2

λ2 + 3
8

m4

λ4 + . . .

1− e−2π|λ|/α

(
1 +

1
2

α2m2

λ4
+ . . .

)
Local, virtual mode energy

Ωλ =
1
|λ|

(
λ2− 3

8
α2m4

λ4
+ . . .

)
Lamb shift

δE = δER− δEM =
h2

6π

α2

∆Em2
+

{
h2

8π
α

m∆E for m� α
h2

4π∆E

√
α
me−

2πm
α for M � α
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Conclusions

The process referred to as “particle production” in the expaning
Universe yields a power-law spectrum (not exponentially falling!)
for the energy density.

This does however not correspond to the presence of particles,
since it is not captured in the response rate of a detector.

The effect becomes however manifest in the Lamb shift of energy
levels of the detector.

The expanding background in first place alters self energy
corrections rather than producing “particles”.
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