MSSM Electroweak Baryogenesis and Flavour Mixing in Transport Equations

Thomas Konstandin

in collaboration with T. Prokopec, M.G. Schmidt and M.Seco hep-ph/0410135, hep-ph/0505103

Outline

- Introduction
 - Electroweak Baryogenesis
- Pormer Approaches
 - Summary
- 3 First Principle Approach
 - The Kadanoff-Baym Equations
 - Results
- Conclusions

Introduction

Statement I

Electroweak Baryogenesis

= Transport + CP Violation

CP-violation: Chargino masses in the MSSM

In the MSSM case the higgsino/wino mass matrix is:

$$m = \left(\begin{array}{cc} M_2 & g h_2(z) \\ g h_1(z) & \mu_c \end{array}\right)$$

with M_2 and μ_c containing a CP-violating complex phase.

Qualitative difference in CP-violation

- $(\partial_z m m^{\dagger} m \partial_z m^{\dagger}) \sim \text{Im}(M_2 \mu_c^*) \neq 0$ and CP-violation is already present on the tree level.
- In the SM: $\partial_z m \sim m \to (\partial_z m m^\dagger m \partial_z m^\dagger) = 0$ and CP-violation depends on loop calculations.

Picture of Electroweak Baryogenesis

Former Approaches

Statement II

Weaknesses of Former Approaches based on Classical Transport

A) Flavour Basis Invariance

B) Ambiguities

Particle distribution function of species j: $f_j(\vec{p}, \vec{x}, t)$ Boltzmann-Equation:

$$\left(\partial_t + \frac{\vec{p}}{m} \cdot \nabla + \frac{\vec{F}_j}{m} \cdot \partial_{\vec{p}}\right) f_j = \text{gain- and loss-terms}$$

Summary

Summary of former Approaches

Approach	Cline et al.	Carena et al.
CP-violation	dispersion relation	local source term
	WKB	perturbation theory
basis	mass eigenbasis	flavour eigenbasis
quasiparticles	charginos	higgsinos/winos
transport	classical	classical
	Boltzmann type	diffusion
mixing	not included	in the source
		not in the diffusion
\hbar order	second order	first order

To decide which approach is correct one has to derive semi-classical transport equations from first principles.

Quantum Transport

Statement III

Quantum Transport Equation

 Kadanoff-Baym-Equation of the Wightman Function in Wigner Space Introduction

The Wightman Function

In statistical QFT all two-point functions obtain an additional 2×2 structure from the *in-in-*(closed-time-path)-formalism

$$\Sigma = \begin{pmatrix} \Sigma^t & \Sigma^> \\ \Sigma^< & \Sigma^{\overline{t}} \end{pmatrix}, S = \begin{pmatrix} S^t & S^> \\ S^< & S^{\overline{t}} \end{pmatrix}.$$

First Principle Approach

00000000000

In Fourier space the Greens function entry $S^{<}$ is called Wightman function and can interpreted as particle density, e.g. in thermal equilibrium

$$iS_{eq}^{<} = 2\pi \operatorname{sign}(k_0) \, \delta(k_u^2 - m^2) \, n_{BE}(k_0)$$

such that

$$\int_{k_0>0} \frac{dk_0}{2\pi} \, 2ik_0 \, S_{eq}^{<} \sim n_{BE}(\sqrt{\vec{k}^2 + m^2})$$

Introduction

Dynamics of the Wightman Function

The dynamics of the Wightman function is described by the Kadanoff-Baym equations that are the statistical analogue to the Schwinger-Dyson equations:

First Principle Approach

00000000000

$$\int d^4 z \left(S_0^{-1}(x_{\mu}, z_{\mu}) - \Sigma(x_{\mu}, z_{\mu}) \right) S(z_{\mu}, y_{\mu}) = \mathbb{1} \delta(x_{\mu} - y_{\mu})$$

Since the Greens-function depends not only on the relative coordinate, but also on the average coordinate $X_{\mu} = (x_{\mu} + y_{\mu})/2$, Fourier-transformation leads to the Moyal star product in Wigner space:

$$e^{-i\lozenge}\{S_0^{-1}(X_{\mu},k_{\mu})-\Sigma(X_{\mu},k_{\mu})\}\{S(X_{\mu},k_{\mu})\} = 1$$

with the diamond operator

$$2\Diamond\{A,B\} := \partial_{X^{\mu}}A\,\partial_{k_{\mu}}B - \partial_{k_{\mu}}A\,\partial_{X^{\mu}}B$$

First Principle Approach 000000000000

Kandanoff-Baym-Equations

Gradient Expansion

Statement IV

Semi-Classical Expansion

= Gradient Expansion in \Diamond

Introduction

Gradient Expansion

Since the background in the MSSM is weakly varying $(I_w \approx 20/T_c)$ the Moyal star product can be simplified by the semi-classical approximation

$$\partial_k \partial_X pprox rac{1}{T_c I_w} pprox rac{1}{20} \ll 1 \quad o \quad e^{-i \Diamond} pprox 1 - i \Diamond$$

First Principle Approach

000000000000

Neglecting selfenergies, the simplest example for an transport equation in a varying background is for one bosonic flavour with real z-dependent mass

$$(k^{2} - m^{2}(z))S^{<} = 0$$
$$(k^{\mu}\partial_{\mu} - \frac{1}{2}(\partial_{z}m^{2}(z))\partial_{k_{z}})S^{<} = 0.$$

Fermionic Systems

After spin projection the fermionic system of equations reads

where $S_0 \dots S_3$ are 2×2 matrices in flavour space and s denotes the spin.

Transport in the Chargino sector

The chargino transport equations for the left/right handed CP violating deviations from equilibrium ($\delta S^<=S^<-S^<_{eq}$) are of the form

$$k_0 \partial_t \delta S^{<} + k_z \partial_z \delta S^{<} + \frac{i}{2} [m^2, \delta S^{<}] + \text{Force}(\delta S^{<}) = \text{Source}(S_{eq}^{<})$$

Comments

- The term $\frac{i}{2}[m^2, \delta S^<]$ will lead to an oscillatory behaviour of the off-diagonal particle densities, similar to neutrino oscillations with frequency $\sim (m_1^2 m_2^2)/k_z$.
- Without this oscillation term the first order mixing terms will not lead to CP-violation

Approach	Heidelberg	
technique	Kadanoff-Baym equations	
basis	basis independent	
quasiparticles	no quasi-particles / no dispersion relation	
transport	semi-classical	
	diffusion	
mixing	included	
\hbar order	first order and second order	
comment	accounts for oscillations	
	unambiguous	

Oscillation Effects

Statement V

The Flavour Oscillation Leads to A) Suppression of Mixing far from Degeneracy B) BAU of maximally $4 \times \eta_{exp}$

Determination of the BAU

HUET, NELSON ('95)

The missing parts to determine the baryon asymmetry of the universe are:

and

Results

Parameters chosen: $M_2 = 200$ GeV, $v_w = 0.05$, $I_w = 20/T_c$, CP-phase maximal.

Numerical Results II

Results

Parameters chosen: $v_w = 0.05$, $I_w = 20/T_c$, CP-phase maximal.

Pessimistic Conclusion

MSSM electroweak baryogenesis is a rather unlikely scenario based on

- A light stop to acquire a strong first order phase transition
- The condition $\mu_c \approx M_2 \lesssim 400$ GeV of the *a priori* unrelated parameters M_2 and μ_c
- A large CP-violating phase that hardly satisfies experimental EDM bounds

Optimistic Conclusion

We achieved to attain a formalism that

- Describes semi-classical transport
- Is basis independent
- Is derived from first principles
- Unambiguous

and it unveiled an oscillation in the dynamics that is significant for the first order mixing effects.

Based on our analysis, MSSM electroweak baryogenesis is a scenario that

- Can explain the BAU
- Predicts $\mu_c \approx M_2 \lesssim 400 \text{ GeV}$
- Will be testable soon

Conclusion

Statements I-V

- I) Electroweak Baryogenesis = Transport + CP Violation
- II) Weaknesses of Former Approaches based on Classical Transport
 - Basis Invariance
 - Ambiguities
- III) Quantum Transport Equation = Kadanoff-Baym-Equation of the Wightman Function in Wigner Space
- IV) Semi-Classical Expansion = Gradient Expansion
- V) The Flavour Oscillation Leads to
 - Suppression of Mixing far from Degeneracy
 - BAU of maximally $4 \times \eta_{exp}$

Non-equilibrium: The electroweak phase transition

Cross-over versus first order electroweak phase transition:

Non-equilibrium: The electroweak phase transition

Cross-over versus first order electroweak phase transition:

Non-equilibrium: The electroweak phase transition

Cross-over versus first order electroweak phase transition:

Sakharov conditions

Baryogenesis is one of the cornerstones of the Cosmological Standard Model.

The celebrated Sakharov conditions state the necessary ingredients for baryogenesis:

Sakharov conditions

- C and CP violation
- B-violation
- non-equilibrium

C- and B-violation: The sphaleron process

In the hot universe B- and C-violation is present in the SM and its extensions due to sphaleron precesses.

The effective sphaleron vertex

- $\Delta B = 3$, $\Delta L = 3$, $\Delta N_{CS} = 1$
- B L conserving
- B + L violating
- Exponentially suppressed by the W mass
- Topological effect of the SU(2) gauge sector

Former Approach using Dispersion Relations

CLINE, JOYCE, KAINULAINEN ('97, '00)

The CP violating dispersion relation E(p,z) for a varying mass (e.g. $m(z) = |m(z)|e^{i\theta(z)}$) is determined by the WKB method

$$E^2 = \vec{p}^2 + m^2 \pm \frac{m^2 \partial_z \theta}{2p_z}$$

and put into the classical Boltzmann equation for the particle density f:

$$(\partial_t + \partial_{p_z} E \partial_z - \partial_z E \partial_{p_z}) f = \text{Coll.}$$

This procedure is performed in mass eigenbasis and does not contain mixing effects.

Former Approach using a Local Source

CARENA, MORENO, QUIROS, SECO, WAGNER ('00, '02)

The additional term in the Schwinger-Dyson equation is interpreted as an interaction term

The CP violating source is calculated from

$$j^{\mu}(X_{\mu}) = \frac{1}{\tau} \int \frac{d^4p}{(2\pi)^4} p^{\mu} \delta S^{<}(p_{\mu}, X_{\mu})$$

and put 'by hand' into diffusion equations

$$(D\partial_z^2 - v_w \partial_z - \Gamma)f = j^0.$$

The source j^{μ} is determined in flavour eigenbasis and contains mixing.

Status of Electroweak Baryogenesis

EWB in the SM excluded

- CP violation too small
- No strong first order phase transition

EWB in the MSSM not excluded/disproved

- CP violation in the neutralino/chargino sector
- Strong first order phase transition in case of a light stop