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Electroweak Baryogenesis

Introduction

Statement I

Electroweak Baryogenesis

= Transport + CP Violation
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Electroweak Baryogenesis
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Electroweak Baryogenesis

CP-violation: Chargino masses in the MSSM

In the MSSM case the higgsino/wino mass matrix is:

m =

(
M2 g h2(z)

g h1(z) µc

)

with M2 and µc containing a CP-violating complex phase.

Qualitative difference in CP-violation
(
∂z mm† −m∂z m†

)
∼ Im(M2µ

∗
c ) 6= 0 and CP-violation is

already present on the tree level.

In the SM: ∂z m ∼ m→
(
∂zmm† −m∂z m†

)
= 0 and

CP-violation depends on loop calculations.
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Electroweak Baryogenesis
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Summary

Former Approaches

Statement II

Weaknesses of Former Approaches
based on Classical Transport

A) Flavour Basis Invariance

B) Ambiguities

Particle distribution function of species j : fj (~p, ~x , t)
Boltzmann-Equation:

(
∂t +

~p

m
· ∇+

~Fj

m
· ∂~p
)

fj = gain- and loss-terms
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Summary

Summary of former Approaches

Approach Cline et al. Carena et al.

CP-violation dispersion relation local source term
WKB perturbation theory

basis mass eigenbasis flavour eigenbasis
quasiparticles charginos higgsinos/winos
transport classical classical

Boltzmann type diffusion
mixing not included in the source

not in the diffusion
~ order second order first order

To decide which approach is correct one has to derive
semi-classical transport equations from first principles.
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Kandanoff-Baym-Equations

Quantum Transport

Statement III

Quantum Transport Equation

= Kadanoff-Baym-Equation of
the Wightman Function

in Wigner Space
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Kandanoff-Baym-Equations

The Wightman Function

In statistical QFT all two-point functions obtain an additional
2× 2 structure from the in-in-(closed-time-path)-formalism

Σ =

(
Σt Σ>

Σ< Σt̄

)
,S =

(
S t S>

S< S t̄

)
.

In Fourier space the Greens function entry S< is called Wightman
function and can interpreted as particle density, e.g. in thermal
equilibrium

iS<eq = 2π sign(k0) δ(k2
µ −m2) nBE (k0)

such that

∫

k0>0

dk0

2π
2ik0 S<eq ∼ nBE (

√
~k2 + m2)
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Kandanoff-Baym-Equations

Dynamics of the Wightman Function

The dynamics of the Wightman function is described by the
Kadanoff-Baym equations that are the statistical analogue to the
Schwinger-Dyson equations:
∫

d4z
(
S−1

0 (xµ, zµ)− Σ(xµ, zµ)
)

S(zµ, yµ) =
�
δ(xµ − yµ)

Since the Greens-function depends not only on the relative
coordinate, but also on the average coordinate Xµ = (xµ + yµ)/2,
Fourier-transformation leads to the Moyal star product in Wigner
space:

e−i♦{S−1
0 (Xµ, kµ)− Σ(Xµ, kµ)}{S(Xµ, kµ)} =

�

with the diamond operator

2♦{A,B} := ∂XµA ∂kµB − ∂kµA ∂XµB
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Kandanoff-Baym-Equations

Gradient Expansion

Statement IV

Semi-Classical Expansion

= Gradient Expansion in ♦
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Kandanoff-Baym-Equations

Gradient Expansion

Since the background in the MSSM is weakly varying
(lw ≈ 20/Tc ) the Moyal star product can be simplified by the
semi-classical approximation

∂k∂X ≈
1

Tc lw
≈ 1

20
� 1 → e−i♦ ≈ 1− i♦

Neglecting selfenergies, the simplest example for an transport
equation in a varying background is for one bosonic flavour with
real z-dependent mass

(k2 −m2(z))S< = 0

(kµ∂µ −
1

2
(∂z m2(z)) ∂kz )S< = 0.
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Kandanoff-Baym-Equations

Fermionic Systems

After spin projection the fermionic system of equations reads

“
2i k̃0 −

k0∂t + ~k‖ · ∇‖
k̃0

”
Ss

0 − (2iskz + s∂z ) Ss
3 − 2imhe

i
2

↼
∂z
⇀
∂kz Ss

1 − 2imae
i
2

↼
∂z
⇀
∂kz Ss

2 = 0

“
2i k̃0 −

k0∂t +~k‖ · ∇‖
k̃0

”
Ss

1 − (2skz − is∂z ) Ss
2 − 2imhe

i
2

↼
∂z
⇀
∂kz Ss

0 + 2mae
i
2

↼
∂z
⇀
∂kz Ss

3 = 0

“
2i k̃0 −

k0∂t +~k‖ · ∇‖
k̃0

”
Ss

2 + (2skz − is∂z ) Ss
1 − 2mhe

i
2

↼
∂z
⇀
∂kz Ss

3 − 2imae
i
2

↼
∂z
⇀
∂kz Ss

0 = 0

“
2i k̃0 −

k0∂t +~k‖ · ∇‖
k̃0

”
Ss

3 − (2iskz + s∂z ) Ss
0 + 2mhe

i
2

↼
∂z
⇀
∂kz Ss

2 − 2mae
i
2

↼
∂z
⇀
∂kz Ss

1 = 0 ,

where S0 . . . S3 are 2× 2 matrices in flavour space and s denotes
the spin.
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Kandanoff-Baym-Equations

Transport in the Chargino sector

The chargino transport equations for the left/right handed CP
violating deviations from equilibrium (δS< = S< − S<eq) are of the
form

k0∂tδS< + kz∂zδS< +
i

2

[
m2, δS<

]
+ Force(δS<) = Source(S<eq)

Comments

The term i
2

[
m2, δS<

]
will lead to an oscillatory behaviour of

the off-diagonal particle densities, similar to neutrino
oscillations with frequency ∼ (m2

1 −m2
2)/kz .

Without this oscillation term the first order mixing terms will
not lead to CP-violation
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Kandanoff-Baym-Equations

Summary

Approach Heidelberg

technique Kadanoff-Baym equations
basis basis independent
quasiparticles no quasi-particles / no dispersion relation
transport semi-classical

diffusion
mixing included
~ order first order and second order
comment accounts for oscillations

unambiguous
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Results

Oscillation Effects

Statement V

The Flavour Oscillation Leads to

A) Suppression of Mixing far from Degeneracy

B) BAU of maximally 4× ηexp
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Results

Determination of the BAU

Huet, Nelson (’95)

The missing parts to determine the baryon asymmetry of the
universe are:

h
~

q
~

q

Y and Sphaleron bL

bL

tL

sL
sL

cL

dL

dL

uL
νe

νµ

ντ
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Results

Numerical Results I

Parameters chosen: M2 = 200 GeV, vw = 0.05, lw = 20/Tc ,
CP-phase maximal.
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Results

Numerical Results II

Parameters chosen: vw = 0.05, lw = 20/Tc , CP-phase maximal.
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Pessimistic Conclusion

MSSM electroweak baryogenesis is a rather unlikely scenario based
on

A light stop to acquire a strong first order phase transition

The condition µc ≈ M2 . 400 GeV of the a priori unrelated
parameters M2 and µc

A large CP-violating phase that hardly satisfies experimental
EDM bounds



Introduction Former Approaches First Principle Approach Conclusions

Optimistic Conclusion

We achieved to attain a formalism that

Describes semi-classical transport

Is basis independent

Is derived from first principles

Unambiguous

and it unveiled an oscillation in the dynamics that is significant for
the first order mixing effects.

Based on our analysis, MSSM electroweak baryogenesis is a
scenario that

Can explain the BAU

Predicts µc ≈ M2 . 400 GeV

Will be testable soon
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Conclusion

Statements I-V

I) Electroweak Baryogenesis = Transport + CP Violation
II) Weaknesses of Former Approaches based on Classical Transport

Basis Invariance

Ambiguities

III) Quantum Transport Equation = Kadanoff-Baym-Equation of
the Wightman Function in Wigner Space

IV) Semi-Classical Expansion = Gradient Expansion
V) The Flavour Oscillation Leads to

Suppression of Mixing far from Degeneracy

BAU of maximally 4× ηexp



Non-equilibrium: The electroweak phase transition

Cross-over versus first order electroweak phase transition:

<h>

VH<h>L at T = 0 GeV

<h>

VH<h>L at T >> 100 GeV

<h>

VH<h>L at T ~ 100 GeV
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Non-equilibrium: The electroweak phase transition

Cross-over versus first order electroweak phase transition:
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Non-equilibrium: The electroweak phase transition

Cross-over versus first order electroweak phase transition:

<h>

VH<h>L at T = 0 GeV

<h>

VH<h>L at T >> 100 GeV

first order PT
e.g. MSSM with light stop

<h>
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Sakharov conditions

Baryogenesis is one of the cornerstones of the Cosmological
Standard Model.

The celebrated Sakharov conditions state the necessary ingredients
for baryogenesis:

Sakharov conditions

C and CP violation

B-violation

non-equilibrium



C- and B-violation: The sphaleron process

In the hot universe B- and C-violation is present in the SM and its
extensions due to sphaleron precesses.

The effective sphaleron vertex

Sphaleron bL

bL

tL

sL
sL

cL

dL

dL

uL
νe

νµ

ντ

∆B = 3, ∆L = 3, ∆NCS = 1

B − L conserving

B + L violating

Exponentially suppressed
by the W mass

Topological effect of the
SU(2) gauge sector



Cline, Joyce, Kainulainen

Former Approach using Dispersion Relations

Cline, Joyce, Kainulainen (’97, ’00)

The CP violating dispersion relation E (p, z) for a varying mass
(e.g. m(z) = |m(z)|e iθ(z)) is determined by the WKB method

E 2 = ~p2 + m2 ± m2∂zθ

2pz

and put into the classical Boltzmann equation for the particle
density f :

(∂t + ∂pz E ∂z − ∂z E ∂pz )f = Coll.

This procedure is performed in mass eigenbasis and does not
contain mixing effects.
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Former Approach using a Local Source

Carena, Moreno, Quiros, Seco, Wagner (’00, ’02)

The additional term in the Schwinger-Dyson equation is
interpreted as an interaction term

The CP violating source is calculated from

jµ(Xµ) =
1

τ

∫
d4p

(2π)4
pµδS<(pµ,Xµ)

and put ’by hand’ into diffusion equations

(D∂2
z − vw∂z − Γ)f = j0.

The source jµ is determined in flavour eigenbasis and contains
mixing.



Carena, Moreno, Quiros, Seco, Wagner

Status of Electroweak Baryogenesis

EWB in the SM excluded

CP violation too small

No strong first order phase transition

EWB in the MSSM not excluded/disproved

CP violation in the neutralino/chargino sector

Strong first order phase transition in case of a light stop
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