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Introduction

• There is an abundance of cosmological data,
and so many more models are testable than
ever before.

• A distinction must be made between
parameter fitting and model selection.

• Model selection statistics are necessary to
choose between models, and determine the
need for new paremeters.



Bayesian Evidence

• Bayes’ theorem gives the posterior
probability of the parameters (θ) of a model
(H) in light of the data (D)

• By marginalizing over the parameters, we
compute the evidence.
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Nested Sampling

• Created by John Skilling, Nested Sampling
computes the evidence directly using an
Monte-Carlo routine

• We re-parameterize the problem so we
integrate over the prior mass (X) directly

• Here X is normalised to unity.
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Integration
• We sample the prior

mass uniformly with
some large number of
points, and sort the
points by likelihood.

• This creates a series of
nested iso-likelihood
surfaces.

• We then increment the
evidence by the prior
mass volume weighted
by the likelihood.



Uniform Sampling

• We cannot go from the co-ordinates of the
points to the value of X, or the reverse.

• Instead we approximate X by its statistics.
After i replacements X ~ (N/N+1)I

• This assumption means that the points and
their replacements must be drawn uniformly
from the prior mass remaining.



Method

1. Sample N points randomly from within the prior. Initially we
will have the full prior range available, i.e. (0,X0=1).

2. Select the point with the lowest likelihood Lj. The volume
corresponding to this point can be estimated probabilistically
as being (N/N+1)j

3. Increment the evidence by Ej=Lj*(Xj-1-Xj+1)/2
4. Replace the lowest likelihood point with a new point with

higher likelihood, which is uniformly distributed within the
remaining prior volume (0,Xj).

5. Repeat the previous steps 2-4, until such time as the
evidence has been estimated to some accuracy.



Replacement points
• Find ellipsoid bounded

by all points, in space
rotated by the
covariance matrix (so
parameter are
uncorrelated).

• Enlarge the ellipsoid by
a certain enlargement
factor

• Generate new point
randomly in ellipsoid.



Stopping Criteria

• We can make an
maximal estimate of
the remaining
evidence, LmaxXj

• Termination of the
process occurs when
this maximal estimate
is some fraction of the
accumulated evidence.



Prior ranges (ΛCDM model)
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Conclusions

• Nested Sampling is accurate, generally
applicable and computationally feasible.

• It requires only O(105) likelihood
evaluations, so is efficient.

• Current data offer no indication of the
need to add either w or ns as extra
parameters to the standard ΛCDM+HZ
cosmological model.


