Cosmological Model Selection with Nested Sampling

astro-ph/0508461 David Parkinson, Pia Mukherjee and Andrew Liddle.

Introduction

- There is an abundance of cosmological data, and so many more models are testable than ever before.
- A distinction must be made between parameter fitting and model selection.
- Model selection statistics are necessary to choose between models, and determine the need for new paremeters.

Bayesian Evidence

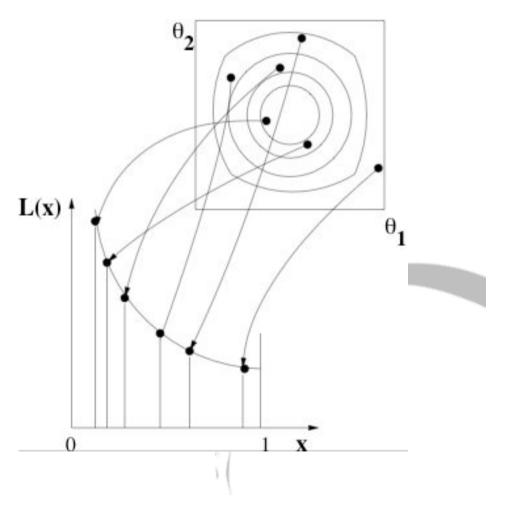
- Bayes' theorem gives the posterior probability of the parameters (θ) of a model (H) in light of the data (D) $P(\theta | D, H) = \frac{P(D | \theta, H)P(\theta | H)}{P(D | H)}$
- By marginalizing over the parameters, we compute the evidence.

$$E = P(D | H) = \int d\theta P(D | \theta, H) P(\theta | H)$$

Nested Sampling

 Created by John Skilling, Nested Sampling computes the evidence directly using an Monte-Carlo routine

$$E = \int L(\theta) p(\theta) d\theta$$


• We re-parameterize the problem so we integrate over the prior mass (X) directly

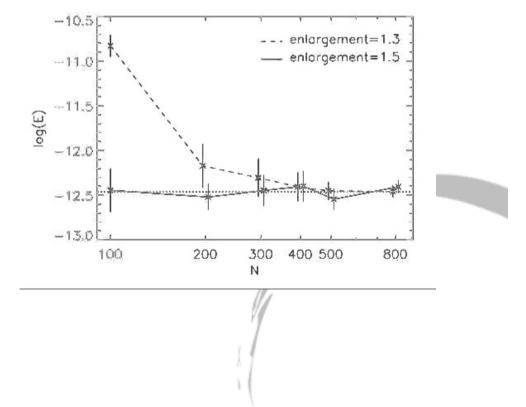
$$E = \int L(X) dX$$

• Here X is normalised to unity.

Integration

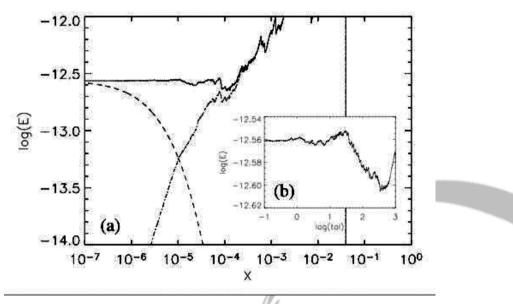
- We sample the prior mass uniformly with some large number of points, and sort the points by likelihood.
- This creates a series of nested iso-likelihood surfaces.
- We then increment the evidence by the prior mass volume weighted by the likelihood.

Uniform Sampling


- We cannot go from the co-ordinates of the points to the value of X, or the reverse.
- Instead we approximate X by its statistics.
 After i replacements X ~ (N/N+1)^I
- This assumption means that the points and their replacements must be drawn uniformly from the prior mass remaining.

Method

- 1. Sample N points randomly from within the prior. Initially we will have the full prior range available, i.e. $(0,X_0=1)$.
- 2. Select the point with the lowest likelihood L_j . The volume corresponding to this point can be estimated probabilistically as being $(N/N+1)^j$
- 3. Increment the evidence by $E_j = L_j^* (X_{j-1} X_{j+1})/2$
- 4. Replace the lowest likelihood point with a new point with higher likelihood, which is uniformly distributed within the remaining prior volume $(0, X_i)$.
- 5. Repeat the previous steps 2-4, until such time as the evidence has been estimated to some accuracy.


Replacement points

- Find ellipsoid bounded by all points, in space rotated by the covariance matrix (so parameter are uncorrelated).
- Enlarge the ellipsoid by a certain enlargement factor
- Generate new point randomly in ellipsoid.

Stopping Criteria

- We can make an maximal estimate of the remaining evidence, L_{max}X_j
- Termination of the process occurs when this maximal estimate is some fraction of the accumulated evidence.

Prior ranges (ΛCDM model)

Parameter	Minimum	Maximum	
$\Omega_{ m b}{ m h}^2$	0.018	0.032	
$\Omega_{cdm}h^2$	0.04	0.16	
Θ	0.98	1.1	
τ	0	0.5	
Log(A _s x10 ¹⁰)	2.6	4.2	

Evidences

Model	LCDM+ HZ	LCDM +n _s	LCDM+ n _s (wide)	HZ+w	w+n _s	
n _s	1	0.8-1.2	0.6-1.4	1	0.8-1.2	
W	-1	-1	-1	-0.331	-0.331	
e.f.	1.5	1.7	1.7	1.7	1.8	
N_{like} (10 ⁴)	8.4	17.4	16.7	10.6	18.0	
Log(E)	0.0 ± 0.08	-0.6 ±0.09	-1.2 ± 0.08	-0.5 ±0.08	-1.5 ± 0.08	

Conclusions

- Nested Sampling is accurate, generally applicable and computationally feasible.
- It requires only O(10⁵) likelihood evaluations, so is efficient.
- Current data offer no indication of the need to add either w or n_s as extra parameters to the standard Λ CDM+HZ cosmological model.