# Networks of Semilocal Strings

Jon Urrestilla<sup>a</sup>

Ana Achúcarro<sup>b</sup>

Petja Salmi<sup>a,b</sup>

a) Centre for Theoretical Physics, University of Sussex, U.K.b) Lorentz Institute, University of Leiden, The Netherlands

COSMO-05, 29th August 2005

#### Hybrid Inflation

• E.g. potential

 $V(\varphi, \chi) = \frac{1}{2}m_{\varphi}^{2}\varphi^{2} + \frac{1}{2}|\chi|^{2}\varphi^{2} + \lambda(|\chi|^{2} - v^{2})^{2},$ 

where  $\varphi$  inflaton,  $\chi$  (complex) waterfall field

- SUSY GUT's: e.g. *D*-term inflation (Dvali, Shafi, Schaefer -94) potential
   V(S, Φ<sub>+</sub>, Φ<sub>-</sub>) = κ<sup>2</sup>S<sup>2</sup>(|Φ<sub>+</sub>|<sup>2</sup> + |Φ<sub>-</sub>|<sup>2</sup>) + |κΦ<sub>+</sub>Φ<sub>-</sub> μ<sup>2</sup>|<sup>2</sup> + D-terms, where Φ<sub>+</sub>, Φ<sub>-</sub> charged and S neutral superfield
- Formation of (topologically stable) ANO cosmic strings in the end of inflation

• Add another pair (hypermultiplet) of charged superfields:

 $\Phi_{\pm} \to \Phi_{\pm}, \widetilde{\Phi}_{\pm}$ 

vacuum manifold is simply connected  $\rightarrow$  no topologically stable strings however, semilocal strings

(Urrestilla, Achúcarro, Davis PRL 92 251302, hep-th/0402032)

#### **Further Motivation**

Two pairs of charged hypermultiplets naturally arises:

- type II superstrings compactified on Calabi-Yau (N = 2 SUSY in four dimensions)
- Brane inflation involving D3/D7 branes

   (K. Dasgupta, J. Hsu, R. Kallosh, A. Linde, M. Zagermann: JHEP 0408:030, hep-th/0405247)

Two hypermultiplet model has the good features of the original (single multiplet) model, especially insensitivity to supergravity corrections.

#### Semilocal Model

Semilocal strings discovered in the early 90's (Vachaspati, Achúcarro -91, Hindmarsh -92) (reviews: A. & V. : Phys. Rep. 327, 347 2000, H. : Nucl. Phys. B392: 461 -93)

- Abelian Higgs model replaced by SU(2) doublet  $\Psi = (\phi, \psi)$
- Lagrangian

 $\mathscr{L} = |(\partial_{\mu} - iA_{\mu})\Psi|^2 - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}\beta(\Psi^{\dagger}\Psi - 1)^2$ 

- Scalar to vector mass ratio  $\beta = (m_{\text{scalar}}/m_{\text{vector}})^2$  is the only free parameter.
- $\beta = 1$  Bogomol'nyi bound
- $\beta > 1$  non-linear sigma model: global defects, unstable strings
- $\beta < 1$  stable strings

(for recent discoveries see: Forgács, Reuillon, Volkov: hep-th/0507246)

### **Semilocal Strings**

- Unlike topological strings semilocal occur as open segments: they have ends
- Ends have long-range interactions like global monopoles
- Segments can either contract and disappear or grow to join a nearby segment
- Like topological strings semilocal can reconnect and form loops that contract

### **Simulations**

- Discretize Lagrangian with the leap frog algorithm and link variables for gauge fields
- Integrate the E.Q.M. in a cubic lattice with periodic boundary conditions (DX = 1, dt = 0.2)
- Parallelized code allows studies up to size 512<sup>3</sup> simulation box in a supercluster (COSMOS in Cambridge)
- 10 different initial conditions used for each fixed value of coupling  $\beta$  to achieve good statistics

Earlier numerical studies (e.g. Achúcarro, Borrill, Liddle -99)

$$\beta = 0.36$$

time = 150



$$time = 300$$

 $\beta = 0.36$ 

0-8

$$\beta = 0.04$$

time = 150



$$\beta = 0.04$$

time = 300



#### **Exponential Length Distribution**



That has been predicted for strings ending in monopoles (Everett, Vachaspati, Vilenkin -85).

# Less Damping

 $\beta = 0.36$ , damping = 0.05



## 'Infinite' Strings

 $\beta = 0.04$ , damping = 0.05



### Conclusions

Formation of the network of semilocal strings was studied

- At the Bogomol'nyi bound the strings disappear
- In the stable regime ( $\beta < 1$ ) length distribution is exponential in the presence of strong damping
- Deep in the stable regime the appearence of 'infinite' semilocal strings when damping is relaxed

Possibility for networks of semilocal strings resembling those of topologically stable ANO's

 $\rightarrow$  consequences to CMB signature?

(see M. Hindmarsh's talk in this conference in CMB session on work in progress: Bevis, Hindmarsh, Kunz, Liddle, Urrestilla)