Enhancement of Line Gamma Ray Signature from Bino-like Dark Matter Annihilation due to CP Violation

Yoshio Sato

(Saitama University/Technical University Munich)

Collaborated with Shigeki Matsumoto (KEK) Joe Sato (Saitama University)

Based on hep-ph/0505160

COSMO 05, Bonn, Germany, Aug. 29, 2005

Introduction

- Many observation indicate the existence of Cold Dark Matter (CDM)
- Next question is what the composition of CDM is.
- In the standard model (SM), there is no candidate for CDM.
- A study of the beyond SM is mandatory.

WMAP http://map.gsfc.nasa.gov

Candidate for Cold Dark Matter

- In the Minimal Supersymmetric Standard Model (MSSM), the lightest neutralino is a candidate for cold dark matter.
- Neutralino is a linear combination of SUSY particle.

$$\tilde{\chi}^{0} = N_{\tilde{B}}\,\tilde{B} + N_{\tilde{W}}\,\tilde{W} + N_{\tilde{H}_{1}}\,\tilde{H}_{1} + N_{\tilde{H}_{2}}\,\tilde{H}_{2}$$

• R-parity conservation ensures the stability of the Lightest Supersymmetric Particle (LSP).

In many SUSY breaking scenario, Bino-like neutralino predicted as the LSP.

Dark Matter Searches

- Direct detection
- Indirect detection
 - Cosmic gamma rays
 - High energy neutrinos
 - Positron and anti-proton excess

Dark Matter (Halo) is associated with the galaxy, and distributes spherically.

The typical velocity of DM

 $v \sim \mathcal{O}(10^{-3})c$

The Milky Way (Our Galaxy)

Gamma Ray Signature from Dark Matter Annihilation

- Gamma ray from dark matter pair annihilation have a line spectrum.
- The diffused gamma ray background induced from astrophysical sources has a continuum spectrum.

The line spectrum is a distinct signature against the diffused gamma ray background.

The line gamma ray is "smoking gun "signal of particle dark matter!

Dark Matter pair annihilation (CP conserving case)

 Dark matter pair annihilation to two gammas is radiative process.

• The full one-loop calculations have been performed. Bergstrom and Ullio (1997)

In particular, when $\tilde{\chi}^0$ is Bino-like neutralino (\tilde{B}),

$$\sigma v \leq 10^{-30} \mathrm{cm}^3 \mathrm{s}^{-1}$$

The detection of the line gamma ray originating from Bino-like neutralino pair annihilation was difficult.

We calculate the line gamma ray flux from Bino-like dark matter pair annihilation in the Galactic Center.

We consider the case that

- i) dark matter is Bino-like neutralino.
- ii) Bino-like neutralino is nearly degenerate with sfermion (stau or stop) in mass.
- iii) The trilinear coupling between \tilde{B} - \tilde{f} -f violates CP;

CP violating phase comes from the sfermion (stau or stop) mass term.

Bino-like Dark Matter

Profumo and Yaguna (2004)

 The viable models with Bino-like dark matter require the presence of mechanisms which suppress the density.

CP of two-body state

in an S-wave

CP of Bino two-body state

CP of sfermion two-body state

$$\begin{array}{c|c|c} J^{PC} & l = 0 & l = 1 \\ \hline s = 0 & 0^{++} & 1^{++} \end{array}$$

This process is forbidden in the CP conserving case.

CP of two-body state

in a P-wave

CP of Bino two-body state

CP of sfermion two-body state

$$\begin{array}{c|c} J^{PC} & l = 0 & l = 1 \\ \hline s = 0 & 0^{++} & 1^{++} \end{array}$$

However, the cross section of this process is suppressed by initial relative velocity square; $\sim O(10^{-6})$

<u>CP Violating Interaction</u>

If \tilde{B} - \tilde{f} -f coupling has CP violating phase, the transition between Bino pair and sfermion pair can take place.

This process does not suffer velocity suppression.

What is the origin of CP violation ?

Sfermion Mass Term

sfermion mass matrix (weak base) : $M_{sf}^2 = \begin{pmatrix} M_{LL}^2 & M_{LR}^2 \\ & & \\ M_{LR}^{2*} & M_{RR}^2 \end{pmatrix}$

where

$$\begin{split} M_{\rm LL}^2 &= M_{\rm L}^2 + m_f^2 + M_Z^2 \cos 2\beta \ (T_3 - Q \sin^2 \theta_W) \\ M_{\rm RR}^2 &= M_{\rm R}^2 + m_f^2 + M_Z^2 \cos 2\beta \ Q \sin^2 \theta_W \\ M_{\rm LR}^2 &= \begin{cases} -m_\tau \ (A_\tau^*) + \mu \tan \beta) & \text{for stau} \\ -m_t \ (A_t^*) + \mu \cot \beta) & \text{for stop} \end{cases} \end{split}$$

This matrix is diagonalized by $U = \begin{pmatrix} \cos \theta_f & \sin \theta_f e^{i\gamma_f} \\ -\sin \theta_f e^{-i\gamma_f} & \cos \theta_f \end{pmatrix}$

 $\int \frac{\partial \theta_f}{\partial t} = \left(-\sin \theta_f e^{-i\gamma_f} - \cos \theta_f\right)$

We assume that only A_{τ} or A_t has CP phase.

Condition that sfermion pair forms bound state

$$\frac{md^2}{4n^2} = 2\delta m - \frac{mv^2}{4} \quad \text{where} \quad d = \begin{cases} \alpha & \text{for stau} \\ 4\alpha_s/3 & \text{for stop} \end{cases}$$

When sfermion pair forms bound state, the cross section can be enhanced.

Outline of Calculation

- i) MSSM action
 - integrate out all fields except for Bino and sfermion
- ii) Effective action for Bino and sfermion *non-relativistic limit*
- iii) Non-relativistic Lagrangian
 - introduce the auxiliary fields for two-body state
- iv) Two-body states effective Lagrangian
- v) Equation of motion (Schroedinger equation)
- vi) Annihilation cross section

Line Gamma Ray Flux from the Galactic Center

$$F_{\text{line}} = 1.9 \times 10^{-11} \text{ cm}^{-2} \text{s}^{-1} \Delta \Omega \left(\frac{100 \text{GeV}}{m_{\tilde{B}}}\right)^2 \left(\frac{<\sigma v>}{10^{-27} \text{cm}^3 \text{ s}^{-1}}\right) \bar{J}$$

where,

$$\bar{J}(\Delta\Omega) \equiv \int_{\Delta\Omega} \frac{d\Omega}{\Delta\Omega} \int_{\text{line of site}} \frac{dl}{8.5 \text{ kpc}} \left(\frac{\rho}{0.3 \text{ GeV cm}^{-3}}\right)^2$$

$\Delta \Omega$: Angular acceptence of the detector

Typical value for Air Cherencov Telescope detector $\Delta \Omega = 10^{-3}$

Dark matter density profile is still controversial.

$$10 < ar{J}(10^{-3}) < 10^6$$

We use moderate value: $\bar{J}(10^{-3}) = 1352$ for NFW profile

Numerical Result of the Line Gamma Ray Flux

parameter $\theta_f = \pi/4$, $\gamma_f = \pi/2$, $\Delta \Omega = 10^{-3}$, $\bar{J} = 1352$ (NFW)

c.f. Flux at one-loop in the CP conserving case $\leq 10^{-14}$ cm⁻²sec⁻¹

<u>Summary</u>

- When CP is violating and sfermion is degenerate with Bino-like neutralino so as to form bound state, the line gamma ray flux is enormously enhanced.
- Our result is maintained as long as the sfermion mixing is not so small and CP violating phase is O(1).
- We expect that our predicted flux may be detected or excluded by the Air Cherencov Telescope detectors in the near future.