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1. Introduction:

cold electroweak baryogenesis

2. Winding knots and Chern-Simons number
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Cold ElectroWeak Baryogenesis

Cold:

EW transition due to ‘inflaton’(σ)–Higgs(ϕ)

coupling, e.g.

Lσϕ = −λσφσ2ϕ†ϕ

time-dependent effective ϕ-mass

µ2
eff = µ2

ϕ + λσφσ2

becomes negative at t = tc, σ2(tc) = −µ2
ϕ/λσφ

⇒ tachyonic transition at ≈ zero temperature
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anomaly in divergence of baryon current

∂µj
µ
B = 3 q, q =

1

16π2
trFµνF̃µν

topological-charge density

tachyonic EW transition with CP violation ⇒
baryon asymmetry

B(t) = 3

∫ t

0
dt′

∫

d3x 〈q(x, t′)〉

Garćıa-Bellido, Grigoriev, Kusenko, Shaposhnikov, PRD 60 (1999)

123504; Krauss, Trodden, PRL 83 (1999) 1502
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rewrite

q = ∂µj
µ
CS, Chern–Simons current

NCS =
∫

d3x j0CS, Chern–Simons number

B(t) = 3〈NCS(t) − NCS(0)〉
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models of ElectroWeak-scale inflation∗

numerical studies of tachyonic EW transition∗∗

∗Copeland, Lyth, Rajantie, Trodden, PRD; Van Tent, JS, Tran-

berg, JCAP

∗∗Garćıa-Bellido, Garćıa-Pérez, González-Arroyo, PRD 67 (2003)

103501; Skullerud, JS, Tranberg, JHEP 0308 (2003) 045

6



with effective CP violation

L∆CP = −κ ϕ†ϕ trFµνF̃µν

- estimates of baryon asymmetry using effec-

tive chemical potential for NCS and effective

sphaleron rate∗

- estimates using L∆CP directly in e.o.m.∗∗

∗Garćıa-Bellido, Garćıa-Pérez, González-Arroyo, PRD 69 (2004)

023504

∗∗Tranberg, JS, JHEP 0311 (2003) 016
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latter work: SU(2)-Higgs model

−LSU(2)H =
1

2g2
trFµνFµν + (Dµϕ)†Dµϕ

+ µ2
effϕ†ϕ + λ(ϕ†ϕ)2

with ∆CP

L = LSU(2)H + L∆CP

initial conditions: quench

µ2
eff = +µ2, t < tc,

= −µ2, t > tc
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exponential growth of Fourier modes ϕk with

imaginary frequencies ωk =
√

k2 − µ2, i.e. with

k2 < µ2

classical approximation∗

1. draw initial condition from ensemble at t < tc, |k| < µ
2. classical evolution for t > tc

3. average over ensemble of initial conditions

(initial ensemble approximated by free vacuum)

∗JS, Cosmo-01; Garćıa-Bellido, Garćıa-Pérez, González-Arroyo, PRD

67 (2003) 103501; Tranberg, JS, JHEP 12 (2002) 020; Arrizabal-

aga, JS, Tranberg, JHEP 0410 (2004) 017
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improved results∗, e.g.
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versus time; κ = 3/16π2m2
W , mH =

√
2mW

∗Tranberg, Lattice ’05
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nB

nγ
= (4 ± 1)10−5 k, mH =

√
2mW

= −(4 ± 1)10−5 k, mH = 2mW

k = 16π2κ m2
W (= 3 ‘δCP ’)
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Winding knots and Chern-Simons number

- L∆CP from beyond the SM? Expect more terms in
effective lagrangian

- CKM-type CP violation, how to deal with?

- semi-analytic approach?∗

study properties of transition (no L∆CP):
Chern-Simons densities, Higgs-winding densities, pro-
files of defects, . . .

interesting in its own right

∗previous modelling by

Turok, Zadrozny, PRL 65 (1990) 2331; NPB 358 (1990) 471

Lue, Rajagopal, Trodden, PRD 56 (1997) 1250
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winding number

Ω =
1

√

ϕ†ϕ

(

ϕ∗
d ϕu

−ϕ∗
u ϕd

)

∈ SU(2)

nw = − 1

24π2
εjkl tr ∂jΩΩ† ∂kΩΩ† ∂lΩΩ†

Nw =

∫

d3x nw

Nw = integer, topological invariant defined for ρ 6= 0,

ρ2 ≡ 2ϕ†ϕ (= µ2/λ ≡ v2 in classical vacuum)

NCS 6= integer in general

At low energy NCS ≈ Nw:

Dµϕ = (∂µ − iAµ)ϕ ≈ 0 ⇒ Aµ ≈ −i∂µΩΩ†, ϕ ≈ Ωϕ0

in classical (gauge-equivalent) vacua: NCS = Nw
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usual suspects

sphaleron:
unstable static solution of the e.o.m. with localized en-
ergy; minimum of energy barrier between two (gauge-
equivalent) classical vacua; NCS = 1/2, Nw not defined
because of zero in ρ; in an ideal sphaleron-transition
NCS increases from 0 to 1, Nw jumps from 0 to 1 at the
sphaleron∗

texture:
without gauge field: configuration with ρ = v, Nw =
1, localized gradient energy; shrinks and decays under
e.o.m. into outgoing waves with Nw → 0
with gauge gauge field: Nw − NCS = 1; small specimens
decay by shrinking with ∆Nw = −1, ∆NCS = 0; large
specimens decay by spreading with ∆Nw = 0, ∆NCS = 1

∗ numbers modulo 1
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new(?): half-knots

near-zeros in ρ give peaks in nw with
∫

peak
nw ≈ ±1/2
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1+1 D, one-component ϕ:

Ω =
ϕ√
ϕ∗ϕ

= eiω ∈ U(1)

nw = − 1

2π
i∂xΩΩ∗ =

1

2π
∂xω, Nw =

∫

dx nw

example: ϕ = φ1 + iφ2, φ1 = sin(x), φ2 = sin(2x − 0.1)
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peak
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similar in 3+1 D

near-zeros of Higgs doublet (all its four real components
small) gives peaks in nw with

∫

peak
nw ≈ ±1/2

linear approximation

ϕα = cα + dαkx
k →

∫

d3x nw = ±1/2 exactly

flip of sign possible when ρ goes through zero

with gauge field:
∫

peak
nw −

∫

peak
nCS ≈ ±1/2

expect decays via ∆
∫

peak
nw = ±1/2, ∆

∫

peak
nCS = 0,

or vice versa
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some results of simulation

mH =
√

2mW (mH =
√

2µ =
√

2λ v, mW = 1
2

gv)

volume: L3 = (21m−1
H )3

boundary conditions: periodic

initial conditions: quench

603 lattice, spacing: a = 0.35m−1
H
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results for typical i.c. ‘nr. 30’
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1st, 2nd, 3rd, . . . generation of winding blobs

20



next: 3D plots of nw at times tmH = 1, 2, . . . , 15

followed by nCS at tmH = 7, . . . , 15
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Chern-Simons density correlated with winding density
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select an early blob (here tmH = 1)
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ball of radius 2.1m−1
H = 6a measured from maximum

winding density
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half-knot forms, nearly changes into an anti-half-knot
at tmH = 5, then decays by spreading to an equilib-
rium gauge-half-knot, by adjustment of the gauge field’s
Chern-Simons number

local contribution ≈ +1/2 to ∆NCS
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i.c. ‘nr. 31’

late transition between tmH = 23 and 24

next: 3D plot shows change of sign in nw but not in nCS

in blob near ‘ceiling’ of box
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nw (upper) and nCS (lower) at time 23 (L) and 24 (R)

32



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  5  10  15  20  25  30
mH t

Etotal
Ehiggs

Egauge
hl/4

energy in ball with radius 2.1m−1
H

33



-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0  0.5  1  1.5  2  2.5  3  3.5  4

t=19
t=20
t=21
t=22
t=23

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0  0.5  1  1.5  2  2.5  3  3.5  4

t=24
t=25
t=26
t=27

nw versus r at various times

34



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  2  4  6  8  10  12  14

t=19
t=20
t=21
t=22
t=23

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12  14

t=24
t=25
t=26
t=27

ρ2/v2 versus r at various times

35



-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  5  10  15  20  25  30
mH t

3
6
9

12
15

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  5  10  15  20  25  30
mH t

3
6
9

12
15

∫

ball
nw (L) and

∫

ball
nCS (R), balls of radius 3a, . . . ,15a

36



it’s a sphaleron transition

locally ∆Nw ≈ +1, ∆NCS ≈ +1
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some more results:

Nw distribution at time tmH = 50 is nearly gaussian∗
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Conclusion

individual trajectories (‘histories’) look messy

generation of Chern-Simons number (baryon number)
appears to go through localized blobs

could recognize half-knots, sphaleron transitions and
texture-like decays

appearence of half-knots when ρ2
vol

is small, 1st, 2nd,
. . . generations

1st generation Higgs-field half-knots seem to be impor-
tant in a rapid tachyonic transition (quench), gauge field
important later in the transition

- many ?? raised/left
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