``Welcome to the dark side of the world."

A unified approach to scaling solutions and its applications to dark energy

Shinji Tsujikawa (Gunma National college of Technology)

Dark energy

Observations suggest that more than 70% of the energy density of the current universe is dark energy that gives an accelerated expansion.

s-block 1 New Designation <u>IA</u> Original Designation										s-bloc 18 Non-Metals								
1	H 1.0094	2 IIA									Atomi Symi	c # bol	13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	² He 4.00260
	- s-blo	ock 🔨								Ato	mic M	ass	1	6	p-b	lock -	9 _	10
2	6.941	Be 9.0122				- Tr	d.l	block— m Ma	tals				C B 10.81	C 12.011	N 14.007	O 15.999	F 18.998	Ne 20.175
3	Na 22.990	12 Mg 24:305	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.06	17 CI 35.453	18 Ar 39.948
4	¹⁹ K 39.098	20 Ca 10.08	21 Sc 44.956	22 Ti 47.88	23 V 50.942	²⁴ Cr 51.996	25 Mn 54.938	26 Fe 55.847	27 Co 58 933	28 Ni 58.69	29 Cu 63.546	30 Zn 65.39	Ga 69.72	³² Ge 72.59	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.80
5	Rb 85.468	Sr 57.62	39 Y 88.906	40 Zr 91.224	Nb 92.906	42 Mo 95.94	43 TC (98)	Ru 101.07	Rh 102.91	Pd 106.42	Ag 107.87	48 Cd 112.41	49 In 114.82	Sn 118.71	Sb 121.75	52 Te 127.60	53 126.91	Xe 131.29
6	Cs 132.91	Ba 137.33	57 to 71	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	OS 190.2	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	7 88 89 104 105 106 107 108 109 110 (Mass Numbers in Parentheses are Fr Ra to 103 Unq Unq Unq (Mass Numbers in Parentheses are											Pha	ases				
Metals													ie mos is	otopes)	Liquid		
Rare Earth d-blockfblock															14.5			
	Elem	ents	[1a	58 Ce	59 Pr	Nd	Pm	Sm	63 Eu	64 Gd	Th	Dv	67 Ho	Er 68	69 Tm	Yh	71
La	anthani	de Se	ries 1	38.91	140.12	140.91	144.24	(145) 93	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.91
	Actini	de Se	ries 2	Ac 27.03	Th 232.04	Pa 231.04	U 238.03	Np 237.05	Pu (244)	Am (243)	Cm (247)	Bk (247)	Cf (251)	Es (252)	Fm (257)	Md (258)	No (259)	Lr (260)

Models of dark energy

- Cosmo-illogical constant
- Quintessence

K-essence

(Potential energy of scalar fields) (Kinematic energy of scalar fields) (Energy density : $\rho = V(\phi)/\sqrt{1-\dot{\phi}^2}$)

Tachyon

Ghost condensate

etc.

(Equation of state : w < -1)

Many scalar-field models were proposed to explain the origin of dark energy.

PESQUIE QUINTESSENCE シャトーパスキエ クァンテサンス フランス *1(ワイン) 容量 750ml 14度未満酸化防止剂 亜硫酸塩 なび販売元 V070

Cosmological scaling solutions

In constructing viable models of dark energy, it is convenient if we know cosmological scaling solutions.

Scaling solutions:

$$\rho_{\varphi} \propto \rho_m$$

(Dark energy density is proportional to fluid energy density)

For a minimally coupled scalar field, the exponential potential $V = V_0 \exp(\lambda \varphi)$

corresponds to scaling solutions. In this case

(i)
$$\lambda^2 > 3(1 + w_m)$$
 $w_{\varphi} = w_m$ (scaling solutions)
(ii) $\lambda^2 < 3(1 + w_m)$ $w_{\varphi} = -1 + \lambda^2/3$ and $\Omega_{\varphi} = 1$

It is possible to explain the late-time acceleration if the slope of the potential changes at late-times: e.g., $V = V_0 [\exp(\alpha \varphi) + \exp(\beta \varphi)]$

Barreiro, Copeland and Nunes, PRD61, 127301 (2000)

 $V = V_0[\exp(\alpha\varphi) + \exp(\beta\varphi)]$

A unified approach to scaling solutions

We wish to know the condition for a scalar-field Lagrangian for the existence of scaling solutions.

Let us start with a general Lagrangian:

$$S = \int d^4 x \sqrt{-g} [R/2 + p(X,\varphi)] + S_m \qquad X = -g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi/2$$

This includes (coupled)-quintessence, phantom, ghost condensate, tachyon, k-essence, ...

We consider a general cosmological background:

$$H^2 = \beta^2 \rho_T'$$

(H: Hubble rate)

n = 1: General Relativity (GR)

n = 2: Randall-Sundrum (RS) braneworld

n = 2/3: Gauss-Bonnet (GB) braneworld

Existence of scaling solutions

In FRW background we have

Scalar field: $\dot{\rho} + 3H(1 + w_{\phi})\rho = -Q\rho_{m}\dot{\phi}$ Fluid: $\dot{\rho}_{m} + 3H(1 + w_{m})\rho_{m} = Q\rho_{m}\dot{\phi}$

Q: coupling between dark energy and fluid (dark matter)

Scaling solutions:
$$\rho/\rho_m = const$$

 $\frac{d\log\rho}{dN} = \frac{d\log\rho_m}{dN} = -3(1+w_s)$
where $w_s = w_m + \Omega_{\varphi}(w_{\varphi} - w_m)$ and $N = \log(a)$
and
 $\frac{d\varphi}{dN} = \frac{3\Omega_{\varphi}}{Q}(w_m - w_{\varphi}) = const$

Lagrangian for the existence of scaling solutions

$$X = \frac{H^2}{2} \left(\frac{d\varphi}{dN}\right)^2 \propto H^2 \propto \rho^n \quad \Longrightarrow \quad \frac{dX}{dN} = -3n(1+w_s)X$$

By using
$$\frac{\partial \log p}{\partial X} \frac{dX}{dN} + \frac{\partial \log p}{\partial \varphi} \frac{d\varphi}{dN} = -3(1+w_s)$$

we find

$$n\frac{\partial \log p}{\partial \log X} - \frac{1}{\lambda}\frac{\partial \log p}{\partial \varphi} = 1$$

$$\Rightarrow p = X^{1/n} g(Xe^{n\lambda\varphi})$$
where $\lambda = Q \frac{1 + w_m - \Omega_{\varphi}(w_m - w_{\varphi})}{\Omega_{\varphi}(w_m - w_{\varphi})}$
 $g: \text{ arbitrary function}$

F. Piazza and S.T. (2004) S.T. and M. Sami (2004)

One can also derive

Application to dark energy models

(A) Quintessence (sometimes known as 'French wine') When p is written in the form: $p = f(X) - V(\varphi)$, we obtain

$$p = c_1 X^{1/n} - c_2 e^{-\lambda\varphi}$$

In the case of GR (n=1), this corresponds to an exponential potential with a canonical field.

Defining a new field: $\phi = \exp[(n-1)\lambda \varphi/2]$, we get

 $p = \frac{4c_1}{(n-1)^2 \lambda^2} \tilde{X} - c_2 \phi^{-2/(n-1)} \quad \text{where} \quad \tilde{X} = \dot{\phi}^2 / 2$ (corresponding to the choice $g = c_1 Y^{1-1/n} - c_2 Y^{-1/n}$)
Canonical field with potential $V(\phi) = c_2 \phi^{-2/(n-1)} \qquad \propto \phi^{-2} \quad \text{for RS braneworld}$ $\propto \phi^6 \quad \text{for GB braneworld}$

(B) Tachyon

The Lagrangian for tachyon is

 $p = -V(\phi)\sqrt{1-\dot{\phi}^2}$

Substituting $g(Y) = -cY^{-1/n}\sqrt{1-2Y}$ for $p = X^{1/n}g(Xe^{n\lambda\varphi})$, we get

$$p = -ce^{-\lambda\varphi}\sqrt{1-2Y}$$
 where $Y = Xe^{n\lambda\varphi}$

Defining $\phi = (2/n\lambda) \exp(n\lambda\varphi/2)$, we find

 $p = -c \left(n\lambda \phi/2 \right)^{-2/n} \sqrt{1 - \dot{\phi}^2}$

Therefore the tachyon has scaling solutions for the potential

$$V(\phi) = \phi^{-2/n} \propto \phi^{-2}$$
 for GR

When Q=0, $w_m < 0$ for the existence of scaling solutions. Scaling solutions exist for $w_m > 0$ in the presence of the coupling Q. See: B. Gumjudpai, T. Naskar, M. Sami, S.T., JCAP 0506, 007 (2005) (c) Dilatonic ghost condensate

Phantom is plagued by quantum vacuum instability, but this is overcome by accounting for higher-order kinematic terms:

$$p = -X + c e^{\lambda \varphi} X^2$$

F. Piazza and S.T. (2004)

 $Q(Q+\lambda) < 3/4 \text{ when } w_m = 0$

This is obtained by substituting g(Y) = -1 + cY for $p = X^{1/n}g(Xe^{n\lambda\varphi})$.

For scaling solutions, we obtain

$$cY = \frac{3(1 - w_m^2) - 2Q(Q + \lambda)}{3(1 - 3w_m)(1 + w_m)} \qquad \Omega_{\varphi} = \frac{3(1 + w_m)[1 + w_m - Q(Q + \lambda)]}{(\lambda + Q)^2(1 - 3w_m)}$$

The vacuum is stable at quantum level for $\frac{cY > 1/2}{2}$.

Accelerated expansion occurs for $Q > \lambda/2$ when $w_m = 0$

The coupling Q can lead to a viable scaling solution.

we obtain the differential equations for $p = X^{1/n}g(Xe^{n\lambda\varphi})$. We find fixed points by setting dx/dN = 0, dy/dN = 0.

One can study the stability of fixed points as well.

We found the following results:

 $(i)w_{\varphi} > -1$

The final stable attractor is either a scaling solution or a scalar-field dominant universe with $\Omega_{\omega} = 1$

 $(ii)w_{\varphi} < -1$

The final stable attractor is a scalar-field dominant universe with $\Omega_{\varphi} = 1$ In this case scaling solutions are unstable.

Conclusion

We derived the condition for scalar-field Lagangian for the existence of scaling solutions:

 $p = X^{1/n} g(X e^{n\lambda\varphi})$

This includes a wide variety of dark energy models: (coupled)-quintessence, phantom, ghost condensate, tachyon, k-essence, ...

We applied the above Lagrangian to dark energy and derived the effective potentials, the fixed points etc.

Useful for the construction of viable dark energy models