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Why going non-linear

Linear theory describes remarkably well perturbations in the universe
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is an excellent approx.

Non-linear aspects:

• Inhomogeneities on scales larger than Hubble scale 

• Non-Gaussianities 
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⇒ Second order cosmological perturbations

⇒ Fully non-linear approach:

• covariant and non-perturbative formalism 

• evolution and conservation of non-linear perturbations at all scales

• Backreaction of non-linear perturbations on the background universe 



Energy density: )(),(),( txtxt ρρδρ −=
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Coordinate approach and gauge invariance

There exists an ideal smooth universe (background). Perturbations are defined with respect to it

),( xtΣ
• Gauge transformation:

change in the correspondence between the perturbed and background universe

Splitting meaningful only with respect to a 
given coordinate system

• Gauge invariant quantities:
combination of gauge-dependent quantities invariant under gauge transformation

• Physical and geometrical meaning:
definition on a hypersurface

[Bardeen, ‘82]



Theorem [Wands, Malik, Lyth, Liddle]:
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Assuming only energy conservation
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On large scales,      is conserved for adiabatic perturbations,ζ

Non-adiabatic pressure
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• Perturbed metric:

• Gauge transformation:
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• Gauge invariant quantity: curvature perturbation on the uniform density hypersurface

uniform density hypersurface

0'≈ζ

ρ
δρψζψρδ
&

H−−=≡−⇒= ~        0~ [Bardeen, Steinhardt, Turner]



Covariant approach
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integrated volume expansion along the worldline of the observer

Definitions:
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• Projector on the orthogonal hypersurface
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Work only with geometrical quantities [Hawking and Ellis, 60’-70’]

• How do we define perturbations? [Bruni and Ellis, ’89]:
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• In a coordinate system:

projected gradient:

directional derivative of a scalar

directional derivative of a vector
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It is natural to introduce the quantity

Non-perturbative generalization of ζ

ζ

Non-perturbative evolution equation, 
valid at all scales and at all order in the perturbations
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Inspired by the work of Wands, Malik, Lyth, Liddle:
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2) Applying the spatially projected derivative:

3) Inverting the spatial gradient and the time (Lie) derivative:

1) Covariant and non-perturbative energy conservation equation:
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Non-perturbative generalization of nadPδ

Generalizing the conserved quantity      to non-linear order

Integrated expansion: local number of e-folds



Recovering the linear theory
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Non-linear covariant equation Linear coordinate based equation
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Second order perturbations
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[See Malik’s talk]• Expand at 2nd order in the perturbations:

• Find automatically the gauge invariant quantity conserved at 2nd order:

with

• Conservation equation for the 2nd order       variable at all scalesζ

Do not need to go at second order!
Simpler to work with covariant variables

[Malik and Wands, ‘02]



Non-perturbative conservation equation: a conclusion
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• Covariant and geometrical variable: describes deviations from FLRW universe 
at any order in perturbations (non-perturbative analog of curv. pert. on uniform density hyp.)

• Simple non-perturbative evolution equation, valid at all scales

)exp(α=S local scale factor (physical quantity)

Can recover very easily the results of the literature
at first and second order

• Other non-linear developments in the literature:

• Non-perturbative analog of curv. pert. on comoving hypersurfaces (scalar fields)

[Rigopoulos, Shellard, ’03] and [Lyth, Malik, Sasaki, ’04] : 

coordinate-based (ADM), no small scale evolution

(separate universe approach)


