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Why going non-linear

Linear theory describes remarkably well perturbations in the universe
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Linear cosmological perturbations
is an excellent approx.

Non-linear aspects:

 Inhomogeneities on scales larger than Hubble scale H -1

» Backreaction of non-linear perturbations on the background universe

* Non-Gaussianities

S(t)=a(t)s +b(t)6”

— Second order cosmological perturbations

= Fully non-linear approach:
* covariant and non-perturbative formalism

* evolution and conservation of non-linear perturbations at all scales




Coordinate approach and gauge invariance

There exists an ideal smooth universe (background). Perturbations are defined with respect to it
[Bardeen, ‘82]

Energy density: dp(t,x) = p(t,x)— p(t)
Metric: 08, (£, X) =g, (£, x)— g, (?)

Splitting meaningful only with respect to a
given coordinate system

2(t,x)
» Gauge transformation:
change in the correspondence between the perturbed and background universe

» Gauge invariant quantities:
combination of gauge-dependent quantities invariant under gauge transformation

» Physical and geometrical meaning:
definition on a hypersurface



Curvature perturbation on uniform energy hypersurfaces é’

* Perturbed metric:

ds® = a’ {~(1+2A)dn’® +20,Bdx'dn +[(1-2y)5, + 20,0 ,E]dx'dx’}

» Gauge transformation:
n—n=n+¢&

op — Op =0p+¢&P
v >y =y-He

» Gauge invariant quantity: curvature perturbation on the uniform density hypersurface

515 =0 = - 57 — é’ =—l — H5_'0 [Bardeen, Steinhardt, Turner]

5,5 = () uniform density hypersurface

Theorem [Wands, Malik, Lyth, Liddle]: Assuming only energy conservation

u“v,T, =0

Tﬂv = (p+P)uVuﬂ +Pg;
o nad—lVZ(E'+v)
(p+P) 3

P, =P —c’dp

n
Non-adiabatic pressure

On large scales, { is conserved for adiabatic perturbations, é’ '=0




Covariant approach

Work only with geometrical quantities [Hawking and Ellis, 60°-70’]

* Projector on the orthogonal hypersurface

a _ _a a 4-velocity of
hb _ gb +u ub ‘ an observer: ua 1

» How do we define perturbations? [Bruni and Ellis, '89]:

projected gradient: X, =D, p=h'V _p

a
hypersurface orthogonal to U

* In a coordinate system:

X, =0,p(t,x)=0.0p(t,x)+0,p(t)=0,0p

Definitions:

® =V u® volume expansion (@ =3H in FLRW)

1
o= __[®d7 integrated volume expansion along the worldline of the observer
®=3a with a=u"V_ «a (e” =a in FLRW)

directional derivative of a scalar

L X, =u’V_X,+X.V_ u® Lie derivative: change of X , along u“

directional derivative of a vector




Generalizing the conserved quantity C to non-linear order

Inspired by the work of Wands, Malik, Lyth, Liddle:
1, =(p+P)u‘u, + Pg, u'’vTi=0 =

1) Covariant and non-perturbative energy conservation equation:

P+O(p+P)=0

2) Applying the spatially projected derivative:
D,(p)+D,(3¢)(p+P)+O(D,p+D,P)=0

3) Inverting the spatial gradient and the time (Lie) derivative:
L,(D,p)+L,(D,a)3(p+P)+O(D,p+D,P)=0

It is natural to introduce the quantity Integrated expansion: local number of e-folds
D p N g
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Non-perturbative evolution equation,
valid at all scales and at all order in the perturbations

Non-perturbative generalization of é/

Non-perturbative gene'[r)aIization of 5Pnad



Recovering the linear theory

Non-linear covargnt equation Linear c}c_)]ordinate basclad equation
L&, =— L, §'=- g ==V (E'+v)
3(p+P) —_ (p+P)
; o)
g”a:Daa—g.Dap é/:—W_H_’i
P p
1) Da=hVa=0a+uu'V,a = ¢ =0a-20p
Yo,
2) a(t,x)=a(t)+oa(t,x)
¢y
3) g = 8,(506‘” ~HP j
o)
. a (1) 1 2
4) 3a=0=V u = oa =—W+§V (E+Ivd77)

5) L&V =ud L0+ Mou=¢a



Second order perturbations

« Expand at 2nd order in the perturbations: [See Malik’s talk]

a(t,x)=a(t)+oa’(t,x)+ %504(2)@, x)

 Find automatically the gauge invariant quantity conserved at 2nd order:

(O =004 % SpMe ™ with
pl

| -~ 1 |
£ = 5 _05:5,0(2) 505(1)'5,0“) L2 & 5,0(”'5,0“) L= (0‘ }5,0(1)2
p p' p" p'

» Conservation equation for the 2nd order 5 variable at all scales

4’(2)v: _H_F(Z) _y_C H 1-*(1)4'(1)' 20, é'

o+ P p+P [Malik and Wands, ‘02]

Do not need to go at second order!
Simpler to work with covariant variables



Non-perturbative conservation equation: a conclusion

» Covariant and geometrical variable: describes deviations from FLRW universe
at any order in perturbations (non-perturbative analog of curv. pert. on uniform density hyp.)

a
¢, =D,o— ;Da/) S = eXp(Ol) local scale factor (physical quantity)

(separate universe approach)

» Simple non-perturbative evolution equation, valid at all scales

L é’ — _ © Can recover very easily the results of the literature
Hed 3(p + P) ¢ at first and second order

* Non-perturbative analog of curv. pert. on comoving hypersurfaces (scalar fields)

LR, = © ', +...
3(p+P)

» Other non-linear developments in the literature:
[Rigopoulos, Shellard, ’03] and [Lyth, Malik, Sasaki, '04] :

coordinate-based (ADM), no small scale evolution



