Z-bursts from the Virgo cluster [revealing the cosmic neutrino background with EHE neutrinos]

Yvonne Y. Y. Wong

DESY Hamburg

in collaboration with

Andreas Ringwald and Tom Weiler

[PRD in press, astro-ph/0505563]

COSMO 2005, Bonn

... the basics

A standard model interaction:

$$\nu_{\rm EHE\nu} + \bar{\nu}_{\rm C\nu B} \xrightarrow{\sqrt{2E_{\nu}m_{\nu}}} = m_Z Z \xrightarrow{70 \%} \text{hadrons}$$
(1)

- Cosmic neutrino background $(C\nu B) \Leftarrow$ fundamental prediction like CMB.
- Extremely high energy neutrinos (EHE ν) \Leftarrow possible, natural in GUTs.
- Neutrino mass $(m_{\nu}) \Leftarrow$ oscillations experiments, $m_{\nu} \gtrsim 0.05$ eV.

$$E_{\nu_i}^{\rm res} = \frac{m_Z^2}{2m_{\nu_i}} = 4.2 \times 10^{21} \left(\frac{\rm eV}{m_{\nu_i}}\right) \text{ eV.}$$
(2)
(cf. $E_{\rm UHECR} \sim 10^{20} \text{ eV.}$)

Observables:

- Emission features: nucleons & photons, "Z-bursts".
- Absorption features in EHE ν flux, "Z-dips".

Z phenomenology: unique sensitivity to the C ν B! [Weiler 1982]

... more basics

Emissions, $\psi = N, \gamma$:

$$F_{\psi|Z}(E,\theta,\phi) \simeq \sum_{i} \operatorname{Br}(Z \to \operatorname{hadrons}) \langle \sigma_{\operatorname{ann}} \rangle \ E_{\nu_{i}}^{\operatorname{res}} \ F_{\nu_{i}}^{\operatorname{res}} \times$$

$$\int dE_{\psi} \int dr \ [1+z(r)]^{\alpha} \ n_{\nu_{i}}(r,\theta,\phi) \ \frac{2}{E_{\nu_{i}}^{\operatorname{res}}} Q(y) \ \left| \frac{\partial P_{\psi}(r,E_{\psi};E)}{\partial E} \right|.$$
(3)

C
$$\nu$$
B: $n_{\nu_i}(r, \theta, \phi) \simeq \langle n_{\nu_i} \rangle \simeq \langle n_{\bar{\nu}_i} \rangle \simeq 56 \text{ cm}^{-3}$ (??)
EHE ν flux:

- $\star F_{\nu}^{\mathrm{res}} \equiv F_{\nu}(E_{\nu}^{\mathrm{res}}) + F_{\bar{\nu}}(E_{\bar{\nu}}^{\mathrm{res}}).$
- * Source evolution, $F_{\nu}(E_{\nu},r) = F_{\nu}(E_{\nu},0)[1+z(r)]^{\alpha}$, e.g., TD: $\alpha = 3/2$.

Z-decay products:

- * Boosted momentum distribution, $Q(y = 4m_{\nu}E_{\psi}/m_Z^2) \Rightarrow$ observed spectral shape.
- * Propagation, $P_{\psi}(r, E_{\psi}; E) \Leftarrow p\gamma_{BG} \rightarrow N\pi, \ pe^+e^- \Rightarrow GZK \ \text{cut-off.}$ $\Leftarrow \gamma\gamma_{BG} \rightarrow e^+e^-, \ e\gamma_{BG} \rightarrow e\gamma; \ BG = CMB/IRB/URB.$

- $m_{\nu} \lesssim 1 \text{ eV} \Rightarrow \text{post-GZK}$ emissions; ideal for new UHECR experiments!
- We are not trying to explain the AGASA excess with Z-bursts! [Fargion, Fodor, Gelmini, Kalashev, Katz, Kusenko, Kuzmin, Lee, Mele, Ringwald, Salis, Semikoz, Sigl, Weiler, Yoshida, etc.]

... the flux

- $m_{\nu} \lesssim 1 \text{ eV} \Rightarrow \text{post-GZK}$ emissions; ideal for new UHECR experiments!
- We are not trying to explain the AGASA excess with Z-bursts! [Fargion, Fodor, Gelmini, Kalashev, Katz, Kusenko, Kuzmin, Lee, Mele, Ringwald, Salis, Semikoz, Sigl, Weiler, Yoshida, etc.]

... the flux

... the flux

- $m_{\nu} \lesssim 1 \text{ eV} \Rightarrow \text{post-GZK}$ emissions; ideal for new UHECR experiments!
- We are not trying to explain the AGASA excess with Z-bursts! [Fargion, Fodor, Gelmini, Kalashev, Katz, Kusenko, Kuzmin, Lee, Mele, Ringwald, Salis, Semikoz, Sigl, Weiler, Yoshida, etc.]

$C\nu B$ & galaxy clusters... gravitational clustering Mean velocity of $C\nu B$:

$$\langle v \rangle \simeq 1.6 \times 10^2 \ (1+z) \left(\frac{\text{eV}}{m_{\nu}}\right) \text{ km s}^{-1}.$$
 (4)

- cf. velocity dispersions of galaxy clusters (~ 1000 km s⁻¹).
- $m_{\nu} \leq 1 \text{ eV} \Rightarrow C\nu B$ clustering in galaxy clusters at $z \leq 2$.
- \Rightarrow Direction dependent Z-burst emission rates.

How much clustering??

• Solve the non-relativistic Vlasov equation:

$$\frac{\partial f_{\nu}}{\partial \tau} + \frac{p}{am_{\nu}} \cdot \frac{\partial f_{\nu}}{\partial x} - am_{\nu}\nabla\phi \cdot \frac{\partial f_{\nu}}{\partial p} = 0, \qquad (5)$$
$$\nabla^2\phi = 4\pi G a^2 [\rho_m(x,\tau) - \bar{\rho}_m(\tau)]. \qquad (6)$$

- C ν B number density, $n_{\nu}(\boldsymbol{x},\tau) = (1/a^3) \int d^3p \ \boldsymbol{f}_{\nu}(\boldsymbol{x},\boldsymbol{p},\tau).$
- Some form of numerical simulation required.

$\dots \nu$ overdensities

$C\nu B$ overdensities:

[Ringwald & Y^3W 2004; Ringwald, Weiler & Y^3W 2005]

- Cosmological parameters, $\{\Omega_m, \Omega_\Lambda, h, \sigma_8\} = \{0.3, 0.7, 0.7, 0.9\}.$
- Assume NFW halo density profile: [Navarro, Frenk & White 1995]

$$\rho_m(r,M) = \frac{\rho_s(M)}{[r/r_s(M)][1 + r/r_s(M)]^2}.$$
(7)

• Incidentally, late-time C ν B clustering may have some observable effects for largescale weak lensing surveys. [Abazajian et al. 2004, Hannestad, Ringwald, Tu & Y³W 2005]

...enhanced fluxes

- Enhanced Z-burst emissions in the direction of galaxy clusters within the GZK zone ($D \lesssim 50$ Mpc).
- Consider the Virgo cluster, $M \sim 10^{15} M_{\odot}$, $D \sim 15 \rightarrow 20$ Mpc, $\theta_d \sim 10^{\circ}$.

- * Cascade/EGRET limit EHE ν flux.
- ★ Nucleons.
- \star Photons (moderate URB).
- * Thick = no $C\nu B$ clustering.
- * Thin = $C\nu B$ clustering (0, 4, 10 degrees from cluster centre).
- ★ Enhancements depend on $m_{\nu} \Leftarrow \text{minimum: } \times 2.$

[[]Ringwald, Weiler & Y³W 2005]

...enhanced fluxes

- Enhanced Z-burst emissions in the direction of galaxy clusters within the GZK zone ($D \leq 50$ Mpc).
- Consider the Virgo cluster, $M \sim 10^{15} M_{\odot}$, $D \sim 15 \rightarrow 20$ Mpc, $\theta_d \sim 10^{\circ}$.

- \star Cascade/EGRET limit EHE ν flux.
- ***** Nucleons.
- * Photons (moderate URB).
- * Thick = no $C\nu B$ clustering.
- \star Thin = C ν B clustering (0, 4, 10 degrees from clus-)ter centre).
- \star Enhancements depend on $m_{\nu} \Leftarrow \text{minimum: } \times 2.$

[Ringwald, Weiler & Y³W 2005]

- ... enhanced fluxes
- Enhanced Z-burst emissions in the direction of galaxy clusters within the GZK zone ($D \lesssim 50$ Mpc).
- Consider the Virgo cluster, $M \sim 10^{15} M_{\odot}$, $D \sim 15 \rightarrow 20$ Mpc, $\theta_d \sim 10^{\circ}$.

- * Cascade/EGRET limit EHE ν flux.
- ***** Nucleons.
- \star Photons (moderate URB).
- * Thick = no $C\nu B$ clustering.
- * Thin = $C\nu B$ clustering (0, 4, 10 degrees from cluster centre).
- ★ Enhancements depend on $m_{\nu} \Leftarrow \text{minimum: } \times 2.$

[Ringwald, Weiler & Y³W 2005]

...enhanced fluxes

- Enhanced Z-burst emissions in the direction of galaxy clusters within the GZK zone ($D \leq 50$ Mpc).
- Consider the Virgo cluster, $M \sim 10^{15} M_{\odot}$, $D \sim 15 \rightarrow 20$ Mpc, $\theta_d \sim 10^{\circ}$.

- \star Cascade/EGRET limit EHE ν flux.
- * Nucleons.
- * Photons (moderate URB).
- * Thick = no $C\nu B$ clustering.
- \star Thin = C ν B clustering (0, 4, 10 degrees from clus-)ter centre).
- \star Enhancements depend on $m_{\nu} \Leftarrow \text{minimum: } \times 2.$

[[]Ringwald, Weiler & Y³W 2005]

Experimental prospects...

For Virgo Z-bursts:

- 1. Angular resolution??
- \Rightarrow A few degrees (all exps OK).
- 2. Statistics??
 - \star Limited EHE ν flux.
 - $\star\,$ Small solid angle.
- \Rightarrow Very large exposure.
- 3. Direction??
 - ★ Fig: exclusion zones for observatories at 35° S&N (zenith angle ≤ 60°).
- \Rightarrow Auger South misses bulk of Virgo.

... general considerations

Matter distribution 7-21 Mpc. Exclusion zones; north array (black), south array (green)

• Best bet: space-based experiments like <u>EUSO</u> and OWL/Multi-OWL.

Galactic Latitude

Extreme Universe Space Observatory (EUSO)...

- \star Lens docked on the ISS.
- * Detect fluorescence emitted from N_2 produced by air showers from primary CR interactions with the atmosphere.
- $\star\,$ Field of view: $\sim 10^5 \ {\rm km}^2.$
- \star Duration: three years.
- \star Angular resolution: ~ 1 degrees.
- * Energy threshold: ~ 5×10^{19} eV; $\gtrsim E_{\text{GZK}}$.
- \star Energy resolution: ~ 10 % at 10^{20} eV.
- * Sensitivity: EUSO $3yr \sim 10^3 \times AGASA$, HiRes, $\sim Auger South 10yr$, $\lesssim 0.1 \times OWL$.

[www.euso-mission.org]

• Our results indicative only; scale up and down for your favourite experiment!

Benchmark EHE neutrino fluxes...

- \star Observational limit.
- \star Cascade/EGRET limit.
- \star Sample EHE ν fluxes.

- 1. Observational limit: firm; applies to all sources.
- 2. Cascade/EGRET limit: source-dependent; applies only to sources emitting also nucleons and ≥ 100 MeV photons.

Benchmark EHE neutrino fluxes...

- \star Observational limit.
- \star Cascade/EGRET limit.
- \star Sample EHE ν fluxes.
- ★ Planned/running experiments.

- 1. Observational limit: firm; applies to all sources.
- 2. Cascade/EGRET limit: source-dependent; applies only to sources emitting also nucleons and ≥ 100 MeV photons.

Case one: hidden sources...

- EHE ν from sources emitting neutrinos only can exceed cascade limit.
- Hidden sources:
 - $\star\,$ Not astrophysical accelerators.
 - ★ Beyond SM sources \Rightarrow must curb photon and nucleon emissions.
 - ★ Proof-of-principle models exist (hidden sectors, mirror sectors, etc.).
- Fig: events within 10° from cluster centre (EHE $\nu \sim$ obs. limit):
 - ★ \blacksquare N + γ clustered; \Box N + γ unclustered; × EG nucleons.
 - * Degenerate m_{ν} (top 3): looks good!
 - * Hierarchical m_{ν} (bottom): difficult.
- EHE $\nu \leftarrow$ EUSO, ANITA, WSRT...

$\ldots < observational limit$

Case two: transparent sources...

- Z, W, π -decay $\Rightarrow \nu, \gamma$.
- EM cascade of γ down to energies probed by EGRET (MeV \rightarrow GeV) \Rightarrow Cascade/EGRET limit on EHE ν .
- Transparent sources:
 - \star (Yet unknown) as tro accelerators.
 - ★ Beyond SM sources; usually involve superheavy particle decay.
- Fig: events within 10° from cluster centre (EHE $\nu \sim$ cascade limit):
 - ★ \blacksquare N + γ clustered; \Box N + γ unclustered; × EG nucleons.
 - * Difficult even for degenerate m_{ν} .
 - \star Widen angle, improve statistics??
 - \star Bigger exp! 20× EUSO 3yr. OWL?

Swamped...

- Intrinsic p + n, γ fluxes from transparent sources \Rightarrow swamp Z-bursts??
- Answer: model-dependent.
- Fig: X-particle decay:
 - * Nucleons.
 - \star Photons (mod URB).
 - \star Thin = intrinsic flux.
 - \star Thick = Z-burst.
 - * Uniform $C\nu B$.
- Evolution:
 - * Most TD, $\dot{n}_X \propto t^{-3}$.
 - * SCS, $\dot{n}_X \propto t^{-4}$.

• Evolving sources and/or high redshift sources favour Z-burst observation.

... or not??

A complementary probe...

$$\ldots Z$$
-dips

• Look for absorption features in the EHE ν flux due to $\nu\bar{\nu} \rightarrow Z$.

[Eberle, Ringwald, Song & Weiler 2004]

• Perfectly resolved dips contain a wealth of information on neutrino properties, source properties, cosmology, etc.. [Eberle, Ringwald, Song & Weiler 2004; Barenboim, Mena Requejo & Quigg 2005; D'Olivo, Nellen, Sahu & Van Elewyck 2005]

A complementary probe...

$$\ldots Z$$
-dips

• Look for absorption features in the EHE ν flux due to $\nu\bar{\nu} \rightarrow Z$.

[Eberle, Ringwald, Song & Weiler 2004]

• Perfectly resolved dips contain a wealth of information on neutrino properties, source properties, cosmology, etc.. [Eberle, Ringwald, Song & Weiler 2004; Barenboim, Mena Requejo & Quigg 2005; D'Olivo, Nellen, Sahu & Van Elewyck 2005]

Summary...

- We live in exciting times.
- Many experiments to look for UHECR and EHE ν in the next decade.
- If there is $\text{EHE}\nu \Rightarrow \text{resonant annihilation } \nu_{\text{C}\nu\text{B}} + \bar{\nu}_{\text{EHE}\nu} \rightarrow Z$ inevitable.
 - \Rightarrow A unique process with sensitivity to the C ν B.
- Several ways to look for resonant annihilation:
 - \star Absorption dips in EHE $\!\nu$ flux.
 - \star Z-decay products:
 - Spectral shape of post-GZK cosmic rays.
 - Spatial distribution due to $\mathrm{C}\nu\mathrm{B}$ clustering in nearby galaxy clusters.
- Enhanced Z-burst emissions from the Virgo cluster:
 - \star Likely within reach of proposed UHECR experiments (OWL, if not EUSO), if degenerate neutrino masses and cascade limit EHE ν flux.
 - \star If hierarchical neutrino masses...

UHECR experiments...

Experiment	Method	Effective	Duty	Effective	Energy	Energy	Angular	Start
		area	factor	aperture	threshold	resol.	resol.	year
		$[\mathrm{km \ s}^{-1}]$	[%]	$[\mathrm{km}^2 \mathrm{\ str}]$	[eV]	[%]	[Deg]	
Fly's Eye	FD	300	10	100	$\sim 10^{17}$	~ 20	~ 2	1986
AGASA	SD	100	100	250	$\sim 3 \times 10^{18}$	~ 20	~ 2	1992
HiRes	FD	10,000	10	1000	$\sim 3 \times 10^{18}$	~ 10	~ 0.5	1999
Auger-S	SD	3,000	100	7,000	$\sim 10^{19}$	~ 10	~ 1	2005
	Hybrid	3,000	10	700	$\sim 3 \times 10^{18}$	~ 5	~ 0.4	
Auger-S&N	SD	6,000	100	14,000	$\sim 10^{19}$	~ 10	~ 1	2007
	Hybrid	6,000	10	1,400	$\sim 3 \times 10^{18}$	~ 5	~ 0.4	2007
EUSO	FD	500,000	10	50,000	$\sim 5 \times 10^{19}$	~ 30	~ 2	~ 2010
OWL	FD	5,000,000	10	500,000	$\sim 10^{20}$	~ 30	~ 2	> 2015