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A. Itisthetimeto bring the quantum gravity view in
cosmology.

* Observations of the CMB anisotropy show existence of
1) Inflations:
The anisotropy requires the quantum correlation before
the inflation,
and the persistence during the inflation
I1) Dark Energy:
Inflation is the rapid expansion due to the vacuum
pressure.

* They should be the conseguences of quantized space-
time.



B. Quantum Gravity Is expected to be to produce the
universe.

*Such atheory should not contain physical laws,
since they appear after the creation of space-time.
* 1t contains the least assumptions.

An example: the Peano axioms for the natural numbers:
1. Existence of the element 1.
2. Existence of the successor §a) of a natural

number a.



C. Axiom for the ssmplicial universe.
1. Existence of the element, a d-simplex.
2. Existence of the neighbor to form asimplicial
complex.

Remarks:
Of course, these conditions are not enough. During the
course of creating a universe we might choose additional
conditions. In such cases we choose most general or
least prejudiced one.

We may think the world has no a priori rules. Therules
emerge as a result of the evolution, which sustains large
structure with long life.



D. Quick tour of the simplicial quantum gravity.
* Let meillustrate the 2d-simplicial guantum gravity as an example.
1. The element = an equilateral triangle
2. The neighbor = a 2d triangulated surface constructed under
the manifold conditions:

1) Two triangles attach I1) Triangles sharing one vertex
through one link. form adisk.
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* The partition function is a set of simplicial manifolds with distinct
triangulations (configurations).

* Known facts:
It is equivalent to the matrix model,
and in the same universality class as the quantum Liouville theory




E. What do we know about the 4d-simplicial qguantum gravity?
* We have shown numerically:
1) there exist three phases. crumple-BP-dimple , and
i) between crumple and dimple phases the transition is continuous as the 2" order
phase transition.
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1)1t has the string susceptibility ssmilar to the conformal
gravity, suggesting to be in the same universality class.
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F. Introducing an extra dimension in space with an
open boundary.

* In the standard dynamical triangulation method
we used to construct a space with a closed

topology, and study Its thermo-dynamical property.

* To describe the evolution we need to consider an
ensemble of configurations with varying boundaries, and
bring the time coordinate in them.

* Space with Rx S*+1 topology is considered.



G. Let’s construct a d-dimensional space with Rx S*1topology.
* Again, we consider the 2d-tynamical triangulation as an example.
1) The partition function consists of a set of spaces with distinct
triangulations (configurations) of afixed S topology weighted
appropriately.
11) Configurations are produced by the (p,g)-moves forming a
Markov chain:

(1.3) (3.1) (2.2)

with the move probability constrained by the detailed balance:
&W b — &Wb—)a
r]a nb
p,: probability weight for the configuration a,
n,: number of all possible moves starting from a configuration a



H. Adding one extra dimension.
* We regard the & surface as the boundary of a 3-ball(B?)

* Moves on the & boundary are regarded by either attaching a tetrahedron on the

boundary sharing one, two, or three triangle(s) in common, or to the contrary taking
out one tetrahedron:
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* Wecdl themas{A S,A V}-move.
In the 3-d case there are 6 moves. A S={-2,0,2} andA V={-1,1}



|. Creation of the qguantum universe.

* The 2d-quantum universeis a set of all possible disks of distinct triangulations
with appropriate probabilities.

* For example up to N,=4:
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* Four types of moves:
{1,1} {-1,1} andtheinverses{-1,-1} {1,-1}.



J. Types of the 2d-unverse

* Number of distinct configurations with the volume V
and the area Sincreases exponentially .

* There are d control parameters{u} in d-dimension:

M=

=0

*Using the Eular relation, N2-N1+NO= y , which reduces
Independent parameter by one, for a 2-dimensional where
{Ni} isthe number of i-simplex. universe, we write

~ A= N, + 1gN,
where N, isthe number of triangles on the boundary.

*u and p 5 arethe cosmological constant and the boundary cosmol ogical
constant.



| ntroducing the Monte Carlo computer time 7

*Numbers of Metroplis checks in the Monte Carlo method for a
Markov chain.

* The volume V and the area Sgrow almost linear in 7 :
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* \/,and §, change sign at the critical linep ¢ and p ¢,

* |In the two dimensional parameter space we expect
three types of universes: open-closed-collapse
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L. Physical timeis defined
* Within ascale factor the physical timet is defined through

V(t) = jS(t')dt'

* Thesetwo times are related as
f 1 dv(:
t= jdr' ()
S(z') dr
* From the computer simulation

S
T ~ exp(—t)
VO
which means the inflation! with the velocity S/V,,



M. Numerical results
* Theinflation velocity N Y2=S/V,;

P critica]  ——
pB critical  ——
A ratio (Cosm.Cant.)  s—f—

172

A
g -
e p
0.z -

b
|:I — .‘\ Ty
1.6 g

14

0
0.z
1.2 0.4

1.2 Lp
1.4

* Thecritical values are
close to what we expect
from the M3-matrix model:
M ¢~1.1 (1/2log[256/27])
at y 5=0, (al diagrams)
b ¢~1.5 (1/4log[432])

aty ;=0.8 (1/2log[16/3])
(1PI without tadpole and
self-energy diagrams

N.B. Beyond p -critical (the red line) theA Y2 changesits sign,

I.e. collapse to a point.



N. Correlations
* Geodesic distance ~r0 (r: radius of the universe: r=5277)
* The two-point correlation function is defined as

(RO - (R)(R®) - (R)
(R

* Strong quantum correlation at small 0 (~1/r)

2D R-R Two Point Function, Open Universe(p=0.0, pg=0.0)
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O. Wherethelarge angle correlation is born?
* Initial correlation ( NL,<500 )
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* During the inflation (N,<1100)

R-R o point funoction on boundary Ioop  s—




P. What will come out in higher dimensions?
* In 3d, there are 3 controlling parameters:
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* K , introduces two phases (dimple-crumple) in open universe



Q.In4d

* There are 4 controlling parameters:

P~

A=uN,+ ugN; —x,N, + kN,

* The physical meaning of the new term is not studied, yet.
(TakeittobeO.)




R. Effect of matter fieldsin 4d

* Adding one vector field the transition between two phases
become smooth.
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S. How about the correlation in 4d ?(Preliminary)

* Two point correlation on the last scattering surface (1ss)
Compared with the WMAP observation (TT-corr)
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To be continued
Thank you for your patience!






