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•• TheoryTheory

•• AnalysisAnalysis

Cosmological Parameters:
Pζ(k), Ph(k), Ωbh2, Ωch2 , Ωdarkh2 ,    
Ωcurv, wdark(z), Nν, mν, YHe, …

•• What is to be improved and why?What is to be improved and why?



3Motivations for an efficient formalismMotivations for an efficient formalism
• Direct connection of leading or subleading (unknown) interactionsinteractions

toto observableobservable features in the perturbation spectra 
in view of
–– gauge freedom
– freedom of defining general-relativistic variables

Claudius Ptolemy

Example:Example: Equivalent descriptions in different gauges

Relative simplicity
Explicit reflection of                
causal dependencies

Nicolas Copernicus
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Formalism:Formalism: Measure of Density PerturbationsMeasure of Density Perturbations

Our requirementsrequirements to a measure of density perturbations:

1. 1. Explicit FreezingFreezing of its superhorizon evolution.

Linear evolution of superhorizon perturbations of 
densities is insensitive to changes of the metric

– perturbations of densities evolve manifestly causally 
despite generally non-causal changes of the metric 

– species decouple gravitationally in the linear order

2. 2. RealityReality of its gravitational driving.

All the terms which describe gravitational driving of 
species by metric inhomogeneities vanish in physically 
homogeneous geometry



5
Formalism:Formalism: Measure of Density PerturbationsMeasure of Density Perturbations
1.1. FreezingFreezing of species density perturbations on superhorizon scales.

• Various measures with this property: Bardeen 80; Lyth 85

(We use the 
Newtonian gauge,
ds2 = a2[–(1+2Φ)dτ 2

+ (1–2Ψ)dx2])
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• Ambiguities: normalization
continuation to small scales

• On superhorizon scales, all such measures are 
mutually proportional 
(by their freezing & phase space squeezing)

• Their time-independence is a consequence of              
energy conservation                                             
and causality:

Mpcτ
x ~λ τ∆� -1H
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Formalism:Formalism: Measure of Density PerturbationsMeasure of Density Perturbations
2.2. RealityReality of gravitational driving.
• Requirements 1 and 2 select 

as a unique generalization of the Newtonian density 
perturbation δna/na to superhorizon scales
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Proof:
– Consider an artificially fine-tuned scenario where the geometry 

becomes homogeneous while the perturbations are 
superhorizon. (E.g., add artificial homogeneous species which 
first have p = – ρ/3. After these species become dominant, set 
them to generate FRW metric with any desired H(z).)

– In the homogeneous geometry, by condition 2, the Newtonian 
δna/na matches to δρa/(ρa+pa)

– Beyond the horizon, by condition 1, δρa/(ρa+pa) matches to da
SB astro-ph/0405157
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Formalism:Formalism: View of the evolution of multiple speciesView of the evolution of multiple species

•• SuperhorizonSuperhorizon
vs.

Frozen density perturbations da
of individual uncoupled species
This view of superhorizon evolution 
was first proposed by Wands, Malik, 
Lyth, and Liddle 2000 in terms of the 
uniform-density curvature ζa.

Note that da=3ζa can also be viewed 
as perturbations of (coordinate) 
densities of the various species in a 
single Newtonian slicing.

Isocurvature Modes

A disadvantage of this 
picture: 

The condition ρtotal= 0
is not preserved by 
superhorizon evolution
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Formalism:Formalism: Evolution of multiple speciesEvolution of multiple species
•• Horizon entryHorizon entry

A. One-to-one match to physically distinct initial   
conditions 

B. Cauchy structure of the evolution equations

(Then the species couple gravitationally through 
the dependence of va evolution on Φ and Ψ)

1
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a
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The variables Da (Durrer 2001; Doran CMBEASY), 
for which A.& B. also hold, are simply related to 
da, which in addition are conserved on 
superhorizon scales:

The variables 
da, va, + possible anisotropy multipoles
(not Φ and Ψ, which follow from 
non-dynamical elliptic equations)

are unconstrained and provide
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Formalism:Formalism: Simplicity of EquationsSimplicity of Equations
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Photon-baryon 
fluid

CDM

SuggestedSuggested Traditional

Neutrinos     
(here, massless)
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– is a non-local functional of     and
– The contribution of     and

is dominant during the horizon entry

Ψ aδ�
– γ scattering and polarization can 

be included, SB astro/0405157
– The last eq. has a fully nonlinear

generalization, SB astro/0505502
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Formalism:Formalism: Simplicity of SolutionsSimplicity of Solutions

SuggestedSuggested Traditional

Radiation era, ignoring neutrinos
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including neutrinos

Solved analytically Analytic solution 
not foundSB, Seljak 03
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Implications:Implications: “Radiation driving” is a gauge artifact “Radiation driving” is a gauge artifact 

of δργ/ργ is unaffected if the metric 
is flattened on superhorizon scales:

•
– The rise is a large-scale artifact of 

the Newtonian gauge
– In appropriate variables it is absent: 

• A resonant boost of δργ/ργ  by 
specially timed decay of Φ? 
– δργ/ργ is affected little    

by adding species with 
different perturbations: 

– The subhorizon amplitude 

in
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• Without neutrinos, the amplitude of δργ/ργ
rises 3-fold in the Newtonian gauge. 

Measures of γ perturbations
dγ

(Newt)3
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SB astro-ph/0405157
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Implications:Implications: Acoustic phase is a nonAcoustic phase is a non--degenerate degenerate 

sensitive probe of the radiation erasensitive probe of the radiation era

– After the horizon entry

amplitude
reduction

phase
shift
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– With the adiabatic i.c.,            
if only perturbations of some 
species (νν or quintessence) 
propagatepropagate faster thanfaster than ccss

φ 0∆ ≠

• Calculating analytically the Green’s function of dγ in the radiation era 
we find

fixed YHe

adjusted YHe
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SB, Seljak 03
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Implications:Implications: Describing the CMB AnisotropyDescribing the CMB Anisotropy

(Newt)
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• Sachs-Wolfe term:
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1
3
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vs.

Better suited for self-
gravitating systems         
(cosmology, CMB)

Suited for small 
scales, on which  
δTγ is measurable
(GPS)
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Implications:Implications: 55--fold Sachsfold Sachs--Wolfe suppression by CDMWolfe suppression by CDM

– Switch off δργ prim/ργ
(set isocurvature i.c. δργ +δρc= 0, hence dγ << dm, set same ζm):

eff
1
3

T
d

T
γ

γ
γ

δ
Θ ≡ + Φ = + Φ + Ψ

– Sachs-Wolfe, naive:  revised:

Θeff(kτ <<1), and so large-angle ∆ΤCMB
receive contribution from both δργ primordial
and the potential Φ due to δρm.
In what proportions?

Matter domination
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– Switch off Φ due to δρm: 

(set homogeneous matter, dm= 0, and same ζprim in the rad. era):
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SB astro-ph/0405157
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Matter domination

dγ
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Sachs-Wolfe
(adiabatic)
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Implications:Implications: The magnitude of the CMB fluctuations for The magnitude of the CMB fluctuations for 

ll < 200< 200 is a sensitive probe of the universe is a sensitive probe of the universe 
composition in the matter eracomposition in the matter era

CMBFAST:

Same: 
– background 

expansion
– primordial γ-b

perturbations
– primordial ζ

This is NOT enhancement 
due to the ISW effect:

The low-l suppression of Cl by CDM potential is 
– an order of magnitude effect 
– statistically significant, 200 3

21/ (2 1) 5 10l l −
= + ×∑ �



17Conclusions:Conclusions:

• The measure of density perturbations da=3ζa which manifests 
explicit superhorizon freezing and reality of gravitational driving 
offers a more mathematically simple and dynamically oriented 
formalism for linear CMB dynamics than the known alternatives.

• The CMB fluctuations for l ≥ 200 do not experience a resonant self-
gravitational boost during the horizon reentry. Nevertheless, the low 
cosmic variance and the existence of non-degenerate signatures at 
small scales allow precision CMB studies of the radiation era.

• The CMB temperature auto-correlation Cl is suppressed by non-
decaying matter potential by 52 = 25 times in the Sachs-Wolfe limit. 
The large magnitude of this suppression makes the effect a 
valuable probe of the matter era.


	CMB Anisotropy
	Motivations for an efficient formalism
	Formalism: Measure of Density Perturbations
	Formalism: Measure of Density Perturbations
	Formalism: Measure of Density Perturbations
	Formalism: View of the evolution of multiple species
	Formalism: Evolution of multiple species
	Formalism: Simplicity of Equations
	Formalism: Simplicity of Solutions
	Implications: “Radiation driving” is a gauge artifact
	Implications: Acoustic phase is a non-degenerate sensitive probe of the radiation era
	Implications: Describing the CMB Anisotropy
	Implications: 5-fold Sachs-Wolfe suppression by CDM
	Implications: The magnitude of the CMB fluctuations for l < 200 is a sensitive probe of the universe composition in the ma
	Conclusions:

