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CMB Anisotropy
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+ General Relativity
* Analysis
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« What is to be improved and why?



Motivations for an efficient formalism

« Direct connection of leading or subleading (unknown) interactions
to observable features in the perturbation spectra
In view of

— gauge freedom
— freedom of defining general-relativistic variables

Example: Equivalent descriptions in different gauges

Claudius Ptolemy Nicolas Copernicus e

5000 F-

= Relative simplicity T
= Explicit reflection of 1 |-
causal dependencies



Formalism: Measure of Density Perturbations

Our requirements to a measure of density perturbations:

1. Explicit Freezing of its superhorizon evolution.

Linear evolution of superhorizon perturbations of
densities is insensitive to changes of the metric

— perturbations of densities evolve manifestly causally
despite generally non-causal changes of the metric

— species decouple gravitationally in the linear order

2. Reality of its gravitational driving.

All the terms which describe gravitational driving of
species by metric inhomogeneities vanish in physically
homogeneous geometry




Formalism: Measure of Density Perturbations

1. Freezing of species density perturbations on superhorizon scales.

e Various measures with this property: Bardeen 80: Lyth 85

£ = l51n[(3)g(‘mif- p)J oy P (We use the
g 3(p+P) . Newtonian gauge,
R = Lom[ @gleomon]__y__22 [(ME] ds? = a2[~(1+20)d 72
6 3(p+p) H + (1-2¥)dx?])

e On superhorizon scales, all such measures are
mutually proportional

(by their freezing & phase space squeezing)

 Their time-independence is a consequence of

energy conservation N
and causality: 3¢ = P__ Y — Moo _ d ‘“./
pP+P Neoo T/%i Mpc

1> Ar~ 3!

« Ambiguities: = normalization
= continuation to small scales



Formalism: Measure of Density Perturbations

2. Reality of gravitational driving.
 Requirements 1 and 2 select

5nac00: 5,0a _3yp

Na coo Pa T Pa

as a unigue generalization of the Newtonian density
perturbation on./n, to superhorizon scales

da

Proof:

— Consider an artificially fine-tuned scenario where the geometry
becomes homogeneous while the perturbations are
superhorizon. (E.g., add artificial homogeneous species which

first have p =— p/3. After these species become dominant, set
them to generate FRW metric with any desired #(z).)

— In the homogeneous geometry, by condition 2, the Newtonian
on,/n, matches to op,/(p,p,)

— Beyond the horizon, by condition 1, dp,/(p,+p,) Matches to d,
SB astro-ph/0405157



Formalism: View of the evolution of multiple species

e Superhorizon

VS.
Frozen density perturbations d, Isocurvature Modes
of individual uncoupled species A disadvantage of this
This view of superhorizon evolution picture:
was first proposed by Wands, Malik, N
Lyth, and Liddle 2000 in terms of the The condition p,,,= 0
uniform-density curvature &,. Is not preserved by

. superhorizon evolution
Note that d.=3¢, can also be viewed P

as perturbations of (coordinate)
densities of the various species in a
single Newtonian slicing.

Aiotal (7) = Za Xa(7) dg,

Xa(T)E pa+ pa
pP+P




Formalism: Evolution of multiple species

* Horizon entry

(Then the species couple gravitationally through
the dependence of v, evolution on ® and V)

The variables
d,, v,, + possible anisotropy multipoles

(not ® and ¥, which follow from
non-dynamical elliptic equations)

are unconstrained and provide

A. One-to-one match to physically distinct initial
conditions

B. Cauchy structure of the evolution equations

The variables D, (Durrer 2001; Doran CMBEASY),
for which A.& B. also hold, are simply related to
d,, which in addition are conserved on
superhorizon scales: d D,

o=

1+wy,




Formalism: Simplicity of Equations

Suggested Traditional
Photon-baryon
R i fluid R - | )
d, + 3 d,— v2d O, + I ® V°e
1+R, 7 3(1+Ry) 7 77T 14Ry 7 3(1+Ry) 7
1 1 . .
2 : -V SR
=V (D + ¥ +H +¥)
( 1+ Rb ) 3 1+ Rb
CDM ) . . oo
d. +90d, =V> @ 5o +HSy =V D+ 3V +3¥
Neutrinos
(here, massless)
I.V +N;iV; IV =—4n;V; (O+Y) AV + niViAV = 4(—niViCD + V)

— ¥ is a non-local functional of 5,and &,

— v scattering and polarization can  — The contribution of ¥ and ¥

o2 GNEEE, 2 EEmiatelioy is dominant during the horizon entry
— The last eq. has a fully nonlinear

generalization, SB astro/0505502



Formalism: Simplicity of Solutions

Suggested

10

Traditional

Radiation era, ignoring neutrinos

Q= k.[(: CSdT

2sin @

d, =3¢ (—cosgo+

de =64, (IHCDJF?/_%JF

2

|

2 3

Oy =4Gin [-cos(p+ 25InQ | 2C0S¢ 231“‘”]

O¢ =08y (1ngp+;/—%+
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sing . CoOs@ s
—cip +———— 3j
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including neutrinos

Solved analytically
SB, Seljak 03

Analytic solution
not found
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Implications: “Radiation driving” is a gauge artifact

Horizon entry in the radiation era: Meas“rgs of 7 perturbations
y
* Without neutrinos, the amplitude of 5p/p, i,
rises 3-fold in the Newtonian gauge. ,"J
- A resonant boost of 5p/p, by 35
specially timed decay of ®? 1 4p,
— op/p, s affected little
by adding species with 0
different perturbations:
— The subhorizon amplitude - o= 0-7p,
of op/p,Is unaffected If the metric 0 (undriven)
Is flattened on superhorizon scales: i =3¢, cos @

4 Py

— The rise is a large-scale artifact of
the Newtonian gauge

— In appropriate variables it is absent: d{"%°™) =3¢, (zsgl(p —cos gD)

SB astro-ph/0405157
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Implications: Acoustic phase is a non-degenerate
sensitive probe of the radiation era

we find

— After the horizon entry

d,(z,k) > Aycos(\k/%+A(pj

= amplitude AAV 02750

reduction A, - 0’

* phase Py
. Ap = 0.1

shift p=0.197 =

— With the adiabatic I.c., Ap #0
If only perturbations of some
species (v or quintessence)
propagate faster than c,

SB, Seljak 03

Calculating analytically the Green’s function of d, in the radiation era
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(1+1) C
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T
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Implications: Describing the CMB Anisotropy

ATT(ﬁ):jdf{(e_K).(G)yeff Vb”|+QUnn) K(dHLP)J

e Sachs-Wolfe term:

VS.
é—r(NCWt) 1
O off = 7_|_ +O O, off E§d7+CD+‘P
y

Suited for small Better suited for self-
scales, on which gravitating systems
oT,is measurable (cosmology, CMB)
(GPS)
d, +3 d +cSk2[d +3(CD+\P+Rb(D)]

l-I—Rb



14

Implications: 5-fold Sachs-Wolfe suppression by CDM

ol y 1
Ocff =——+P=-d, +O+V¥
3 Matter domination
y .
O.(kr<<1), and so large-angle A7,
receive contribution from both 5o, ;.o =y ) ST
and the potential ® due to Jp,.. e
In what proportions? ol it
0.2
— Sachs-Wolfe, naive: revised:
ot 1 3 1 6
Oupp i —LD=——:1:—= 3O.¢:d, :3(P+P)=——:1:——
eff T 5 > eff 10y 1 3( ) E -

— Switch off 5p, ../p,
(set isocurvature I.c. 9p,+op,= 0, hence d <<d,,, set same ¢ ):

3@efr 1 d, :3(CI)+\P)=—§:O:—§

— Switch off @ due to &p,;: S 5
(set homogeneous matter, d,,.= 0, and same ¢ ;. in the rad. era):

SB astro-ph/0405157 3Ocsr :dy, :3(@+¥)= 1:1:0



Matter domination 3O : dy :3(D+ VW) =

3D+ W
Sachs-Wolfe (®+¥)
(adiabatic) 30
OF _l . 1 . _é
o -
Isocurvature
(negligible
5pyprim/py) __:O:_g
5 5
1 ﬂ\ 3®eff /Pﬁ}
Homogeneous \ ff/ \“\}t:___
(zero op,) 0 \ | / \
Ll “mﬁ | “\xﬁ 1:1:0




Implications: The magnitude of the CMB fluctuations for
| <200 is a sensitive probe of the universe
composition in the matter era

CMBFAST:  LCDMmadel This is NOT enhancement

0y T T T T T T T I
*-fnifii;;; R /due to the ISW effect:
LCDM model, kih = 0.002 Mpce™

R e Coom i

05 Same e —
—background‘ ------ BRI

= | expansion

— primordial: yhb : 1

oz perttirbations:::

gy .pnmordlal G L

d =0 |

4 = E —— adiabatic |
*':r' D-l -....-.:-..E.--E--E..E.E.E.E.E. - GDM”"[ :

I1III31 T 1D ”‘IID 10 10
The low-|l suppression of C, by CDM potential is

— an order of magnitude effect
— statistically significant, 1/\/2200

o (21+1) =5x107



Conclusions:

« The measure of density perturbations d =3¢, which manifests
explicit superhorizon freezing and reality of gravitational driving
offers a more mathematically simple and dynamically oriented
formalism for linear CMB dynamics than the known alternatives.

« The CMB fluctuations for | > 200 do not experience a resonant self-
gravitational boost during the horizon reentry. Nevertheless, the low
cosmic variance and the existence of non-degenerate signatures at
small scales allow precision CMB studies of the radiation era.

« The CMB temperature auto-correlation C, is suppressed by non-
decaying matter potential by 52= 25 times in the Sachs-Wolfe limit.
The large magnitude of this suppression makes the effect a
valuable probe of the matter era.
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