Behind the CMB: From interpretation of blackbox computations to predictive analytical description

Sergei Bashinsky, ICTP

COSMO 05

CMB Anisotropy

Theory

Analysis

+ Kinetic Theory

+ General Relativity

$$f_a(\tau, \mathbf{x}, \mathbf{p}) + \dot{x}^i \frac{\partial f_a}{\partial x^i} + \dot{p}^i \frac{\partial f_a}{\partial p^i} = [\dot{f}_a]_{\text{collisions}}$$

 $R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi G T_{\mu\nu}$

- Angular Scale 0.5 0.2° 6000 TT Cross Power Ruled out by WMAF 0.8 Spectrum 5000 A - CDM All Data energy density R_A WMAF CBI 4000 0.6 ACBAR f(I+1)C_I/2π (μK²) 3000 0.4 A16 2000 Ruled out by WMAP 0.2 1000 Full-sky Image by the WMAP Science Team 0.4 0.6 Matter density Ω_ 6.8 0.2 **Cosmological Parameters:** $P_{\zeta}(k)$, $P_{h}(k)$, $\Omega_{b}h^{2}$, $\Omega_{c}h^{2}$, $\Omega_{dark}h^{2}$, $\Omega_{\text{curv}}, W_{\text{dark}}(z), N_{v}, m_{v}, Y_{\text{He}}, \dots$
- What is to be improved and why?

Motivations for an efficient formalism

- Direct connection of leading or subleading (unknown) interactions to observable features in the perturbation spectra in view of
 - gauge freedom
 - freedom of defining general-relativistic variables

Example: Equivalent descriptions in different gauges

Claudius Ptolemy

Nicolas Copernicus

- Relative simplicity
- Explicit reflection of causal dependencies

Formalism: Measure of Density Perturbations

Our requirements to a measure of density perturbations:

1. Explicit Freezing of its superhorizon evolution.

Linear evolution of superhorizon perturbations of densities is insensitive to changes of the metric

- perturbations of densities evolve manifestly causally despite generally non-causal changes of the metric
- species decouple gravitationally in the linear order
- 2. Reality of its gravitational driving.

All the terms which describe gravitational driving of species by metric inhomogeneities vanish in physically homogeneous geometry

Formalism: Measure of Density Perturbations

- 1. Freezing of species density perturbations on superhorizon scales.
- Various measures with this property: Bardeen 80; Lyth 85

$$\zeta = \frac{1}{6} \delta \ln \left[{}^{(3)}g^{(\text{unif. }\rho)} \right] = -\Psi + \frac{\delta\rho}{3(\rho+p)}$$
$$\mathcal{R} = \frac{1}{6} \delta \ln \left[{}^{(3)}g^{(\text{comov.})} \right] = -\Psi - \frac{2\rho}{3(\rho+p)} \left(\Phi + \frac{\dot{\Psi}}{\mathcal{H}} \right)$$

- (We use the Newtonian gauge, $ds^2 = a^2 [-(1+2\Phi)d\tau^2]$ $+(1-2\Psi)dx^{2}$])
- On superhorizon scales, all such measures are mutually proportional (by their freezing & phase space squeezing)
- Their time-independence is a consequence of energy conservation and causality: 3

$$\delta \zeta = \frac{\delta \rho}{\rho + p} - 3\Psi = \frac{\delta n_{\text{coo}}}{n_{\text{coo}}} \equiv d$$

- Ambiguities:
 normalization
 - continuation to small scales

Formalism: Measure of Density Perturbations

- 2. Reality of gravitational driving.
- Requirements 1 and 2 select

$$d_a \equiv \frac{\delta n_{a \text{ coo}}}{n_{a \text{ coo}}} = \frac{\delta \rho_a}{\rho_a + p_a} - 3\Psi$$

as a **unique** generalization of the Newtonian density perturbation $\frac{\delta n_a}{n_a}$ to superhorizon scales

Proof:

- Consider an artificially fine-tuned scenario where the geometry becomes homogeneous while the perturbations are superhorizon. (E.g., add artificial homogeneous species which first have $p = -\rho/3$. After these species become dominant, set them to generate FRW metric with any desired $\mathcal{H}(z)$.)
- In the homogeneous geometry, by condition 2, the Newtonian $\delta n_a/n_a$ matches to $\delta \rho_a/(\rho_a + p_a)$
- Beyond the horizon, by condition 1, $\delta \rho_a / (\rho_a + p_a)$ matches to d_a SB astro-ph/0405157

Formalism: View of the evolution of multiple species

Superhorizon

Frozen density perturbations d_a of individual **uncoupled** species

This view of superhorizon evolution was first proposed by Wands, Malik, Lyth, and Liddle 2000 in terms of the uniform-density curvature ζ_a .

Note that $d_a=3\zeta_a$ can also be viewed as perturbations of (coordinate) densities of the various species in a **single** Newtonian slicing.

$$d_{\text{total}}(\tau) = \sum_{a} x_{a}(\tau) \ d_{a},$$

$$x_a(\tau) \equiv \frac{\rho_a + \rho_a}{\rho + p}$$

VS.

Isocurvature Modes

A disadvantage of this picture:

The condition $\rho_{\text{total}} = 0$ is not preserved by superhorizon evolution

Formalism: Evolution of multiple species

Horizon entry

(Then the species couple gravitationally through the dependence of v_a evolution on Φ and Ψ)

The variables

 d_a , v_a , + possible anisotropy multipoles (not Φ and Ψ , which follow from non-dynamical elliptic equations)

are unconstrained and provide

- A. One-to-one match to physically distinct initial conditions
- B. Cauchy structure of the evolution equations

The variables D_a (Durrer 2001; Doran CMBEASY), for which A.& B. also hold, are simply related to d_a , which in addition are conserved on superhorizon scales: $d_a = \frac{D_a}{1}$

Formalism: Simplicity of Equations

SuggestedTraditional
$$\ddot{d}_{\gamma} + \mathcal{H} \frac{R_b}{1+R_b} \dot{d}_{\gamma} - \frac{1}{3(1+R_b)} \nabla^2 d_{\gamma}$$
 $\ddot{\Theta}_{\gamma} + \mathcal{H} \frac{R_b}{1+R_b} \dot{\Theta}_{\gamma} - \frac{1}{3(1+R_b)} \nabla^2 \Theta_{\gamma}$ $= \nabla^2 (\Phi + \frac{1}{1+R_b} \Psi)$ $= \frac{1}{3} \nabla^2 \Phi + \mathcal{H} \frac{1}{1+R_b} \dot{\Psi} + \ddot{\Psi})$ $\ddot{d}_c + \mathcal{H} \dot{d}_c = \nabla^2 \Phi$ CDM $\ddot{d}_c + \mathcal{H} \dot{d}_c = \nabla^2 \Phi$ $\ddot{\delta}_c + \mathcal{H} \dot{\delta}_c = \nabla^2 \Phi + 3\mathcal{H} \dot{\Psi} + 3\ddot{\Psi}$ $\dot{I}_V + n_i \nabla_i I_V = -4n_i \nabla_i (\Phi + \Psi)$ $\dot{\Delta}_V + n_i \nabla_i \Delta_V = 4(-n_i \nabla_i \Phi + \dot{\Psi})$

 $-\gamma$ scattering and polarization can be included, SB astro/0405157

 \dot{I}_{ν}

- The last eq. has a fully nonlinear generalization, SB astro/0505502
- $-\Psi$ is a non-local functional of δ_a and $\dot{\delta}_a$
- The contribution of $\dot{\Psi}$ and $\ddot{\Psi}$ is dominant during the horizon entry

Formalism: Simplicity of Solutions

Suggested

Traditional

Radiation era, ignoring neutrinos

 $\varphi \equiv k \int_{-\infty}^{\tau} c_{s} d\tau$

including neutrinos

Solved analytically

SB, Seljak 03

Analytic solution not found

Implications: "Radiation driving" is a gauge artifact

Horizon entry in the radiation era:

- Without neutrinos, the amplitude of $\delta \rho_{\gamma} / \rho_{\gamma}$ rises 3-fold in the Newtonian gauge.
- A resonant boost of $\delta \rho_{\gamma} / \rho_{\gamma}$ by specially timed decay of Φ ?
 - $\delta \rho_{\gamma} / \rho_{\gamma}$ is affected little by adding species with different perturbations:
 - The subhorizon amplitude -1 \swarrow of $\delta \rho_{\gamma} / \rho_{\gamma}$ is **unaffected** if the metric is flattened on superhorizon scales:
 - The rise is a large-scale artifact of the Newtonian gauge
 - In appropriate variables it is absent:

SB astro-ph/0405157

$$\frac{3\delta\rho_{\gamma}^{(\text{undriven})}}{4\rho_{\gamma}} = 3\zeta_{\text{in}}\cos\varphi$$

add $\rho_0 = 0.7 \rho_{\gamma}$

 $4\rho_{\nu}$

add $\rho_{v} = 0.7 \rho_{v}$

 $(\mathbf{0})$

0

$$d_{\gamma}^{(\gamma \text{ dom.})} = 3\zeta_{\text{in}} \left(\frac{2\sin\varphi}{\varphi} - \cos\varphi\right)$$

Implications: Acoustic phase is a non-degenerate sensitive probe of the radiation era

- Calculating analytically the Green's function of d_γ in the radiation era we find
 - After the horizon entry

$$d_{\gamma}(\tau,k) \to A_{\gamma} \cos\left(\frac{k\tau}{\sqrt{3}} + \Delta\varphi\right)$$

 amplitude reduction

$$\frac{\Delta A_{\gamma}}{A_{\gamma}} \approx -0.27 \frac{\rho_{V}}{\rho}$$

- phase shift $\Delta \phi \approx 0.19 \pi \frac{\rho_v}{\rho}$
- With the adiabatic i.c., $\Delta \phi \neq 0$ if only perturbations of some species (ν or quintessence) propagate faster than c_s

SB, Seljak 03

Implications: Describing the CMB Anisotropy

$$\frac{\Delta T(\hat{\boldsymbol{n}})}{T} = \int d\tau \left[\left(e^{-\kappa} \right)^{\bullet} \left(\Theta_{\gamma \,\text{eff}} - \mathbf{v}_b^i n_i + Q^{ij} n_i n_j \right) + e^{-\kappa} \left(\dot{\Phi} + \dot{\Psi} \right) \right]$$

VS.

• Sachs-Wolfe term:

$$\Theta_{\gamma \,\text{eff}} \equiv \frac{\delta T_{\gamma}^{(\text{Newt})}}{T_{\gamma}} + \Phi$$

Suited for small scales, on which δT_{γ} is measurable (GPS)

$$\Theta_{\gamma \, \text{eff}} \equiv \frac{1}{3} d_{\gamma} + \Phi + \Psi$$

Better suited for selfgravitating systems (cosmology, CMB)

$$\ddot{d}_{\gamma} + \mathcal{H}\frac{R_b}{1+R_b}\dot{d}_{\gamma} + c_s^2 k^2 \left[d_{\gamma} + 3(\Phi + \Psi + R_b \Phi)\right] = 0$$

Implications: 5-fold Sachs-Wolfe suppression by CDM

$$\Theta_{\rm eff} \equiv \frac{\delta T_{\gamma}}{T_{\gamma}} + \Phi = \frac{1}{3}d_{\gamma} + \Phi + \Psi$$

 $\Theta_{\rm eff}(k\tau <<1)$, and so large-angle $\Delta T_{\rm CMB}$ receive contribution from both $\delta \rho_{\gamma \rm primordial}$ and the potential Φ due to $\delta \rho_{\rm m}$. In what proportions?

- Sachs-Wolfe, naive:

$$\Theta_{\text{eff}}: \frac{\delta T_{\gamma}}{T_{\gamma}}: \Phi = -\frac{1}{2}: 1: -\frac{3}{2}$$

revised:

$$3\Theta_{\text{eff}}: d_{\gamma}: 3(\Phi + \Psi) = -\frac{1}{5}: 1: -\frac{6}{5}$$

- Switch off $\delta \rho_{\gamma \text{prim}} / \rho_{\gamma}$ (set isocurvature i.c. $\delta \rho_{\gamma} + \delta \rho_c = 0$, hence $d_{\gamma} << d_m$, set same ζ_m):

Switch off
$$\Phi$$
 due to $\delta \rho_{\rm m}$:
(set homogeneous matter, $d_m = 0$, and same $\zeta_{\rm prim}$ in the rad. era)

SB astro-ph/0405157

 $3\Theta_{\text{eff}}: \boldsymbol{d}_{\boldsymbol{\gamma}}: 3(\Phi + \Psi) = 1:1:0$

14

Matter domination

Implications: The magnitude of the CMB fluctuations for l < 200 is a sensitive probe of the universe composition in the matter era

16

The **low-**l suppression of C_l by CDM potential is

- an order of magnitude effect
- statistically significant, $1/\sqrt{\sum_{l=2}^{200}(2l+1)} \approx 5 \times 10^{-3}$

Conclusions:

- The measure of density perturbations $d_a=3\zeta_a$ which manifests explicit superhorizon **freezing and reality** of gravitational driving offers a more mathematically simple and dynamically oriented formalism for linear CMB dynamics than the known alternatives.
- The CMB fluctuations for *l* ≥ 200 do not experience a resonant selfgravitational boost during the horizon reentry. Nevertheless, the low cosmic variance and the existence of non-degenerate signatures at small scales allow precision CMB studies of the radiation era.
- The CMB temperature auto-correlation C_l is suppressed by nondecaying matter potential by $5^2 = 25$ times in the Sachs-Wolfe limit. The large magnitude of this suppression makes the effect a valuable probe of the matter era.