CUORICINO results & perspectives for CUORE

Fabio Bellini

Università di Roma "La Sapienza" & INFN Roma on behalf of the CUORE Collaboration

9th International Workshop on Particle Physics and the Early Universe Bonn, Germany Aug 28-Sept 01 2005

Neutrinoless Double Beta Decay: ββ0v

2

• From v oscillation experiments: $M_v \neq 0$, $|\Delta M_{12}^2| << |\Delta M_{13}^2|$

Still missing: absolute mass scale and hierarchy, phases, Dirac or Majorana nature?

◆ One controversial claim (4.2 σ) Klapdor-Kleingrothaus et al. Phys. Lett. B 586 (2004) 198 $\langle m_{v} \rangle < [0.1 \div 0.9] eV best value \langle m_{v} \rangle = 0.44 eV$

CUORICINO experimental approach

•Bolometric technique: energy is measured as a temperature increase in the detector •Homogeneous detector: $\beta\beta0\nu$ source = absorber

◆ Active isotope: ¹³⁰Te

- ◆ Natural abundance 33.9% ⇒ low cost
- Transition energy $Q_{\beta\beta} = (2528.8 \pm 1.2) \text{ KeV}$

large phase space and low backgroundPredicted half life:

 $\langle m_{\nu} \rangle \approx 0.3 \, eV \rightarrow \tau^{\beta \beta 0 \nu} \approx 10^{25} \, y$

- Low temperature calorimeter
 - $\Delta T = E/C \implies low C$
 - \Rightarrow dielectrics @ low T (~ 10mK) : C~T³
 - Thermometer: NTD Ge thermistor $\Delta T \Rightarrow \Delta R$ $\Rightarrow 0.1 \text{ mK/MeV} \rightarrow 1 \text{mV/MeV}$
- Statistical fluctuation: $\sigma(E) = K_{\rm B}CT^2 \sim 10 \text{ eV}$
- Typical pulse decay time: $\tau \sim 10^{2-3}$ ms
 - Absorber material: **TeO**,
 - Low heat capacity
 - Possibility to grow large crystals
 - Good intrinsic radio-purity

Homogeneous Detector sensitivity

 Sensitivity S^{ββ0ν}: lifetime corresponding to the minimum number of detectable events above background @ a given C.L.

CUOR(ICINO) @ LNGS

Cuoricino experiment is installed in the

Underground National Laboratory of Gran Sasso L'Aquila – I TALY

the mountain providing a 3500 m.w.e. shield against cosmic rays

CUORE -(hall A)

Cuoricino⁻

R&D final tests for CUORE (hall C)

CUORICINO Tower

Installed in a dilution refrigerator (10 mK) surrounded by: • Roman Pb inner shield (1cm) lateral • 20 cm Pb external shield • Neutron shield: B-polyethylene ~10 cm

• Anti-radon box:

nitrogen overpressure

CUORICINO assembly

- Careful material selection: crystals grown from pre-tested activity powders
 Careful cleaning of PTFE, Cu and TeO₂ surfaces
- Clean conditions for detector assembling

Data taking and performances

• ²³²Th γ -source external to the cryostat:

 $<\Delta E>$ @2615 KeV ²⁰⁸Tl γ -line average 5x5x5 cm³ crystal: FWHM 7.5±2.9 KeV average 3x3x6 cm³ crystal: FWHM 9.6±2.5 KeV

Sum background spectra

 $<\Delta E> @2615 \text{ KeV}$ $5x5x5 \text{ cm}^{3} \text{ crystal}$ $3x3x6 \text{ cm}^{3} \text{ natural crystal}$ $3x3x6 \text{ cm}^{3} \text{ enriched crystal}$ $0.5Kg^{130}\text{Te} \cdot \text{y}$ $0.2Kg^{130}\text{Te} \cdot \text{y}$

FWHM ~7.5KeV FWHM ~12KeV peak not visible

CUORICINO ββ0v result

hep-ex/0501034 accepted by PRL

CUORICINO sensitivity & discovery potential

Cuoricino results: $\langle m_{v} \rangle < [0.2 \div 1.1] eV$

Klapdor-Kleingrothaus HM: $\langle m_{v} \rangle < [0.1 \div 0.9] eV \langle m_{v} \rangle = 0.44 eV$

A. Strumia, F. Vissani hep-ph 05030246

• Could CUORICINO test HM result?

- Good chances to have a positive indication
- But : cannot falsify HM if no signal is seen

Cryogenic Underground Observatory

for Rare Events

CUORE expected sensitivity

CUORE $\beta\beta0\nu$ sensitivity will depend strongly on the bkgd level and detector performance

CUORE GOAL:

test inverse hierarchy: 10-50 meV

In five years of data taking

B(counts/keV/kg/y)	$\Delta({ m keV})$	$T_{1/2}(y)$	$ \langle m_{\nu} \rangle (\mathrm{meV})$
0.01	10	1.5×10^{26}	23-118
0.01	5	$2.1{ imes}10^{26}$	19-100
0.001	10	4.6×10^{26}	13-67
0.001	5	$6.5 imes 10^{26}$	11-57

Spread due to NME uncertainties: main obstacle to answer basic questions on v nature

CUORICINO vs CUORE ββ0v background

preliminary

• CUORICNO ββ0ν background:

◆ ~40% 2615keV ²⁰⁸Tl line tail: from Th chain via multi-Compton events. <u>Source located in the</u> <u>cryostat</u>

- ~60% flat bkgd: degraded α particles from crystal surface(10%) & material facing crystals (50%)
- ◆ ~negligible contribution from 2515 KeV ⁶⁰Co tail due <u>Cu cosmogenic activation</u>

CUORE Evaluation (MonteCarlo simulation based on CUORICINO, miDBD, Ge measurements)

- Neutron & environmental background reduced by lead and neutron shield
- Cosmogenic Cu and Te activation reduced by underground storage of materials
- $\beta\beta2\nu$ decay contribution < 10⁻³ counts/kev/KeV/y
- ◆ Bulk contaminations: $\text{Te0}_2 \sim 10^{-13} \text{g/g}$, Cu ~ $10^{-12} \text{g/g} \Rightarrow 2 \cdot 10^{-3} \text{ counts/kev/KeV/y}$

2615keV ²⁰⁸Tl reduced by properly shielding in CUORE cryostat + selection of construction materials

◆ Surface continuation ~10⁻⁹g/g for Te0₂& Cu ⇒ 7•10⁻² counts/kev/KeV/y
Problem!!
Reduced by compact and granular CUORE structure (self-shielding detector) but not enough
to reach CUORE goal: require reduction factor 4 for Te0 & 10 for Cu surface

no problem

CUORE R&D

- Cleaning test (Hall C Sept-Nov 2004):
 - CU: etching, electro-polishing, passivation
 - Crystal: etching (Nitric acid), lapping with clean powder $(2\mu \text{ SiO}_2)$
 - New assembling procedure with selected materials
 - Reduction of a factor 4 on crystal surface contamination(<u>CUORE milestone reached</u>) and a factor 2 on Cu surfaces (still a factor 5 missing)

- New passive procedure (plasma cleaning) & surface sensitive detectors development for active bkgd rejection *under test*

Conclusion

CUORICNO:

• The most sensitive $\beta\beta0\nu$ decay running experiment:

 $\tau^{1/2} > 1.8 \cdot 10^{24} @ 90 C.L. \Rightarrow \langle m_{v} \rangle < [0.2 \div 1.1] eV$

- Good chances to confirm KK-HM experiment
- CUORICNO proved the feasibility of CUORE
- Crucial informations for background identification
- CUORE:
 - Cryostat and hut construction will start soon

• Intense R&D activity to reduce background and optimize construction and assembly

- Enrichment option still open: only core (2nd phase)
- The inverse hierarchy will be explored
- Start data taking: 1st January 2010