Bouncing Universes in Stringy-Gravity

at COSMO'05, Bohn

by Tirthabir Biswas

McGill University, Montréal

Reference: hep-th/0508194

Collaborators: Anupam Mazumdar & Warren Siegel

Why Non-perturbative Gravity?

• Stringy Motivation:

- * Higher Derivative Corrections appear as a series in α'
- * In String Field Theory HD modification is Gaussian $(e^{\Box}\phi)$ in vertex factors, redefinition: $\phi \to e^{-\Box}\phi$

Freedom from Ghosts

- * Ghosts violate Unitarity &/or carry Negative Energy
- * Higher Derivative Theories generically have Ghosts

$$S = \int d^4x \ \phi \Box (\Box + m^2) \phi \Rightarrow \Box (\Box + m^2) \phi = 0$$
$$\Delta(p^2) = \frac{1}{p^2(p^2 + m^2)} \sim \frac{1}{p^2} - \frac{1}{(p^2 + m^2)}$$

* No extra states, Non-perturbative Ex: $\Box e^{-\Box} \phi = 0$

Asymptotic Freedom

* Improved UV behaviour: 4th Order Gravity

$$S = \int d^4x \, \sqrt{-g} (R + c_0 R^2 + b_0 C^2)$$

even Renormalizable [Stelle, 1978]

(Ghost+Asymptotically) Free Gravity ⇒ NP Gravity

- * Address Singularities: Big Bang, Black Holes...
 - At Short distance Gravity Weakens
 - \Rightarrow Pressure can prevent Collapse \Rightarrow Bounce

Newtonian Intuition

$$H^2 \equiv \frac{\dot{r}^2}{r^2} = \frac{M_p^2}{3} \left(-\rho r V(r) + \frac{6E}{M_p^2 m r^2} \right)$$

Model

- Action: $S = \int d^4x \sqrt{-g} F$, $F = R + \sum_{n=0}^{\infty} c_n R \square^n R$
- "Generalized" Einstein's Field Equations [Schmidt]:

$$\widetilde{G}_{\mu\nu} \equiv G_{\mu\nu} + \sum_{n=0}^{\infty} G_{\mu\nu}^n = T_{\mu\nu}$$
$$G_{\mu\nu}^n \sim c_n(\Box^{n+1}R + \Box^p R \Box^m R)$$

- Conservation Equation: $\nabla^{\mu} \widetilde{G}_{\mu\nu} = 0$
 - \Rightarrow For Cosmology G_{00} equation suffices

Propagator

- Trace Equation (Lorentz Gauge): $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ $\Rightarrow \widetilde{G} = -\frac{1}{2}\Box(1 - 6\sum_{0}^{\infty}c_{i}\Box^{i+1})h = -\frac{1}{2}\Box\Gamma(\Box)h$ $\Rightarrow \Delta(p^{2}) = \frac{1}{p^{2}\Gamma(-p^{2})}$
- Ghost Free Theory $\Leftrightarrow \Gamma(\Box)$ has single/no zero
- Potential for h (scale factor): $\widetilde{G} \sim -m\delta(\vec{r}) \Rightarrow h(r) \sim \frac{1}{r} \int_{-\infty}^{\infty} dp \frac{p}{p^2 \Gamma(-p^2)} e^{ipr}$
- Asymptotic Freedom: Integrand falls faster than $\frac{1}{p}$ $\Rightarrow h(r) \stackrel{r \to 0}{\to}$ constant
- Newtonian Limit: $\Gamma(-p^2) \stackrel{p \to 0}{\to} 1 \Rightarrow h(r) \stackrel{r \to \infty}{\to} \frac{1}{r}$
- Example: $\Gamma(\Box) = e^{-\Box} \Rightarrow h(r) \sim \frac{\operatorname{erf}(r)}{r}$

Non-singular Bounce

- Prescription: Find a=a(t) such that $\square R(t) \sim R(t)$ $(\ldots)R(t)+(\ldots)R^2(t) \sim$ matter sources Entails only solving Algebraic Equations
- Hyperbolic Bounce: $a(t) = \cosh \lambda t$ works! $R(t) \sim 2 \mathrm{sech}^2 \lambda t$, $\Box^n R \sim \mathrm{sech}^2 \lambda t$
- ullet G_{00} Equation: $\widetilde{G}_{00}=T_{00}=rac{1}{3}\left[\Lambda+
 ho_0\mathrm{sech}^4\lambda t
 ight]$
- Solutions Exist to Ghost free condition, $\rho_0 > 0$ & "Bounce Constraints" $\Lambda \neq 0$

Transition to FRW, $\Lambda = 0$

- Late times: $a(t) \to \frac{a_0}{2} e^{\lambda t}$ & HD Terms $\sim \mathrm{sech}^2 \to 0$ \Rightarrow Einstein Gravity & deSitter Universe $\Rightarrow \Lambda \neq 0$
- Near Bounce: $G_{00} \rightarrow 0$ while HD Terms are Finite
- Approximate Bounce:
 - * Small times: HD Terms = Radiation
 We found examples of Ghost-free bounces
 - * Transition: $G_{00} \sim \text{HD Terms}$
 - * Large times: FRW cosmology, HD Terms $<< G_{00}$ $a(t)\sim t^{1/2}$, $G_{00}\sim \frac{1}{t^2}$, $\widetilde{G}_{00}^n\sim \frac{1}{t^{2(n+2)}}$

Conclusions

- Non-perturbative Gravity can be Ghost and asymptotically free
- Small times/distances: HD terms important (bounce)
- Large times/distances: Newtonian dynamics & FRW
- More exact Solutions, Better understanding
- Adressing Black hole Singularity: (Ricci & Weyl)