Gravitino LSP in the Constrained MSSM

Ki Young Choi

29 August 2005

Astro-Particle Theory and Cosmology Group
The University of Sheffield, UK

In collaboration with Cerdeño, Jedamzik, L.Roszkowski, Ruiz de Austri

Contents of present Unverse

WMAP data with other CMB experiments (ACBAR and CBI), 2dFGRAS measurements, and Ly α forest data determines the best-fit cosmological parameters[Spergel et.al, (2003)]:

```
\Omega_{tot} = \Omega_{\Lambda} + \Omega_{m} + \dots = 1.02 \pm 0.02 \text{ (Flat Universe)}
\begin{cases}
\text{energy} & \Omega_{\Lambda} = 0.73 \pm 0.04 \text{ (accelerating)} \\
\text{matter} & \Omega_{m} = 0.27 \pm 0.04
\end{cases}
\begin{cases}
\Omega_{b}h^{2} = 0.0224 \pm 0.0009 \text{ (BBN, CMB)} \\
\Omega_{DM}h^{2} = 0.113^{+0.008}_{-0.009} \\
\Omega_{\nu}h^{2} < 0.0076 & (h = 0.71^{+0.04}_{-0.03})
\end{cases}
\text{radiation} & \Omega_{\gamma} = (2.471 \pm 0.004) \times 10^{-5} \text{ (}T_{0} = 2.275 \pm 0.002\text{K }95\% \text{ CL)}
```

Dark Matter?

What is Dark Matter?

neutrino, neutralino, generic WIMP, axion, axino, Gravitino, WIMPzilla,...

LSP (Lightest Supersymmetric Particle) is a possible candidate for the cold dark matter if R-parity is conserved. The lightest Neutralino is the most promising candidate with an abundance calculated from the freeze-out of annihilation processes in a thermal initial state.

Gravitino LSP : spin 3/2, the superpartner of Graviton, always exists in local SUSY, with mass $m_{\tilde{G}}=\frac{F}{\sqrt{3}M_p}$ F: SUSY breaking scale, M_p : reduced Planck mass

Gravitino Dark Matter

- Gravitino problem
- Is Gravitino stable? LSP or not?
- Relic density of Gravitino for Dark Matter, $\Omega_{\tilde{G}} = \Omega_{DM}$?
- NLSP decay to Gravitino at late times
 - non-thermal production (NTP) of Gravitino
 - Big Bang Nucleosynthesis (BBN) constraints
 - CMB constraints
- Thermal production (TP) from scattering during reheating
- Unbounded From Below (UFB) constraints

Gravitino Problem

If $T_R > T_f$, Gravitino freezes out from thermal equilibrium with the relic density $\Omega_{\tilde{G}} h^2 = 1.17 \left(\frac{100}{g_*} \right) \left(\frac{m_{\tilde{G}}}{1 \text{ keV}} \right)$

$$\Omega_{\tilde{G}} \equiv \frac{\rho_{\tilde{G}}}{\rho_{C}}$$

- Stable : $m_{\tilde{G}} \lesssim 1$ keV from $\Omega_{tot} < 1$ or Gravitino dilution
- ullet Unstable : $m_{ ilde{G}}\gtrsim 10$ TeV from BBN constraint

If $T_R < T_f$, the freeze-out Gravitino is diluted away by Inflation and reproduced by thermal scattering in the reheating period with abundance

$$Y_{\tilde{G}} \equiv \frac{n_{\tilde{G}}}{n_{\gamma}} = 7.7 \times 10^{-12} \left(1 + \frac{m_{\tilde{g}}^2}{12m_{\tilde{G}}^2} \right) \left(\frac{T_R}{10^{10} \text{GeV}} \right)$$

 T_R : Reheating temperature

[Bolz, Brandenburg, Buchmüller, (2001)]

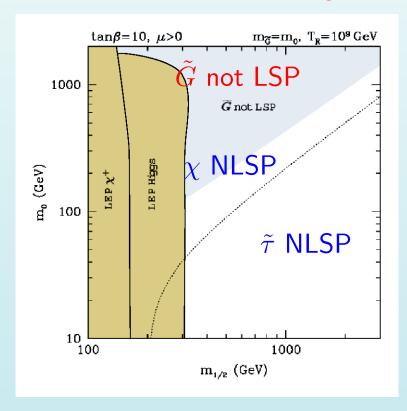
ullet unstable : $T_R \lesssim 10^8~{
m GeV}$ from BBN

[Ellis,Kim,Nanopoulos('84), Cyburt et al.('02), Kawasaki et al.('04)]

• stable : $T_R \lesssim 10^{10}$ GeV from $\Omega_{tot} < 1$

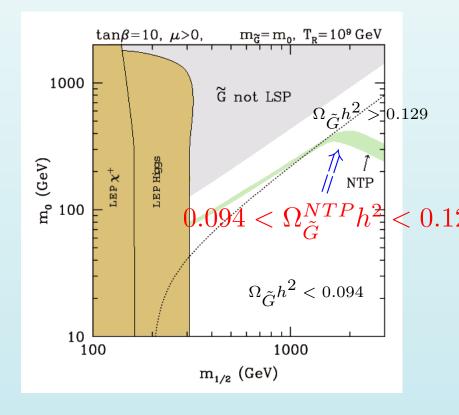
$$\Omega h^2 = 3.63 \times 10^9 \frac{m}{100 \text{ GeV}} Y$$

Gravitino LSP in the CMSSM


Constrained MSSM

- At M_{GUT} gauginos $M_1=M_2=M_3=m_{1/2}$
- scalars $m_{\tilde{q}}^2=m_{\tilde{l}}^2=m_{H_b}^2=m_{H_t}^2=m_0^2$ • trilinear soft terms $A_b=A_t=A_0$
- radiative EWSB
- five independent parameters: $\tan\beta, m_{1/2}, m_0, A_0, sgn(\mu)$

Free parameter: $m_{\tilde{G}} \sim M_{SUSY}$ Experimental constrains

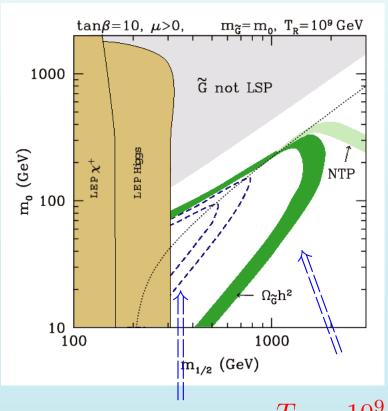

- $m_{_Y\pm}>104~{\rm GeV(LEP)}$
- light higgs: $m_h > 114.4 \text{ GeV(LEP)}$
- BR(B $\to X_s \gamma$)= $(3.34 \pm 0.68) \times 10^{-4}$

e.g.,
$$\tan \beta = 10, \ \mu > 0, \ m_{\tilde{G}} = m_0$$

Gravitino Relic abundance

$$m_{\tilde{G}} = m_0$$

Non-thermal production: NLSP decay

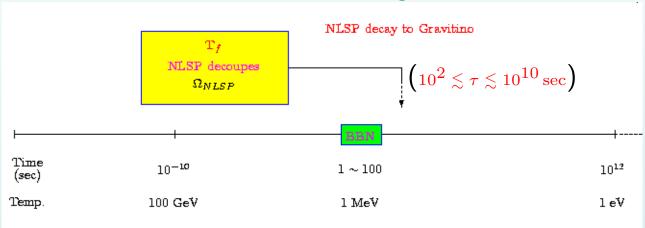

$$\begin{array}{c} \chi \text{ NLSP} \\ \chi \to \tilde{G} \gamma \\ \chi \to \tilde{G} Z, \tilde{G} Higgs, \tilde{G} (\gamma^*/Z^*) q \bar{q} \end{array}$$

$$\begin{array}{ccc} & \tilde{\tau} & \mathsf{NLSP} \\ < 0.129 & \tilde{\tau} \to \tilde{G}\tau \\ & \tilde{\tau} \to \tilde{G}\tau Z, \tilde{G}\nu_{\tau}Ws, \tilde{G}\tau(\gamma^*/Z^*)q\bar{q} \end{array}$$

$$\Omega_{\tilde{G}}^{NTP}h^2 = \frac{m_{\tilde{G}}}{m_{NLSP}}\Omega_{NLSP}h^2$$

Gravitino Relic abundance

$$m_{\tilde{G}} = m_0$$


Thermal production: scattering during reheating

$$\Omega_{\tilde{G}}^{TP}h^2 \simeq 0.2 \left(\frac{T_R}{10^{10}~\text{GeV}}\right) \left(\frac{100~\text{GeV}}{m_{\tilde{G}}}\right) \left(\frac{m_{\tilde{g}}(\mu)}{1~\text{TeV}}\right)^2$$
 [Bolz,Brandenburg,Buchmüller., (2001)]
$$\downarrow \hspace{1cm}$$

$$\Omega_{\tilde{G}}h^2 = \Omega_{\tilde{G}}^{TP}h^2 + \Omega_{\tilde{G}}^{NTP}h^2$$

$$0.094 < \Omega_{\tilde{G}}h^2 < 0.129$$

$$T_R = 10^9 \text{ GeV}$$

$$T_R = 5 \times 10^9 \text{ GeV}$$

NLSP decay

NLSP decay produces photons and hadrons with high energy

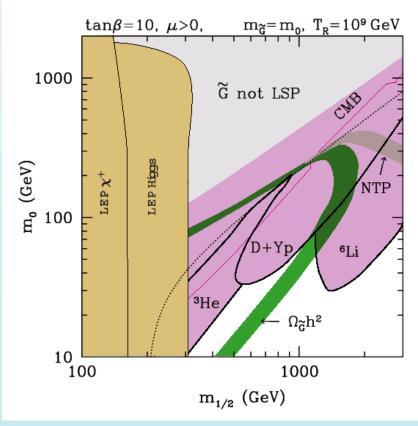
$$\begin{array}{c} \chi \text{ NLSP} \\ \chi \to \tilde{G}\gamma \Rightarrow \text{ EM showers} \\ \chi \to \tilde{G}Z, \tilde{G}Higgs, \tilde{G}\gamma^*/Z^* \\ \Rightarrow \text{ had showers} \\ \end{array} \begin{array}{c} \tilde{\tau} \text{ NLSP} \\ \tilde{\tau} \to \tilde{G}\tau \Rightarrow \text{ EM showers} \\ \tilde{\tau} \to \tilde{G}\tau Z, \tilde{G}\nu_{\tau}W, \tilde{G}\tau\gamma^*/Z^* \\ \Rightarrow \text{ had showers} \\ \end{array}$$

- Late time decay due to gravitational interaction: $10^2 \sim 10^{10}\,\mathrm{sec}$
- The high energy injection(EM,had) at late times during or after BBN changes the light element abundances \Rightarrow Strong constraints on NLSP

BBN constraints

BBN constraints

conservative observational limit

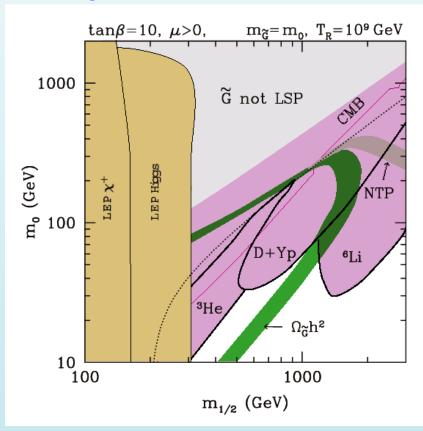

$$2.2 \times 10^{-5} < D/H < 5.3 \times 10^{-5}$$
 $0.232 < Y_p < 0.258$
 $1.11 \times 10^{-10} < ^7\text{Li/H} < 4.5 \times 10^{-10}$
 $^3\text{He/D} < 1.72$
 $^6\text{Li/}^7\text{Li} < 0.1875$

CMB constraints

dimensionless chemical potential μ

$$|\mu| < 9 \times 10^{-5}$$

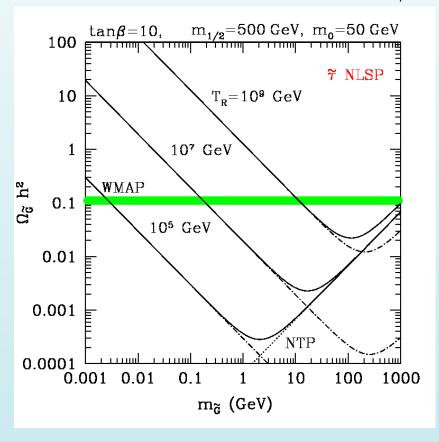
$$m_{\tilde{G}} = m_0, \ T_R = 10^9 \text{ GeV}$$

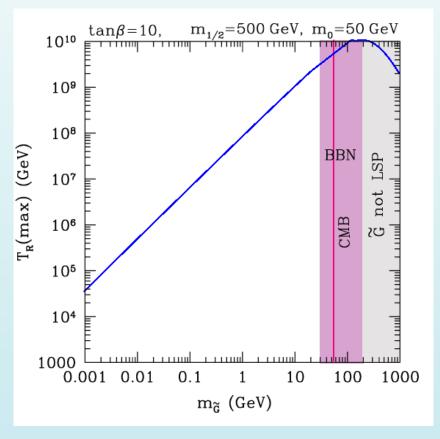

$$D/H+Y_p+^7Li/H+^3He/D+^6Li/^7Li$$

COSMO 05, Bonn, 28 Aug - 1 Sep '05

BBN constraints

- χ NLSP is inconsistent with BBN : still possibility for sub-GeV Gravitino $(\tau_\chi < 1\,{\rm sec})$
- $\tilde{\tau}$ NLSP region is allowed
- CMB constraint is weaker than BBN: potentially important for more precise CMB measurements
- NTP only region is disallowed by BBN: we need another mechanism for Gravitino production
- How high T_R is possible?


$$m_{\tilde{G}} = m_0, \ T_R = 10^9 \text{ GeV}$$

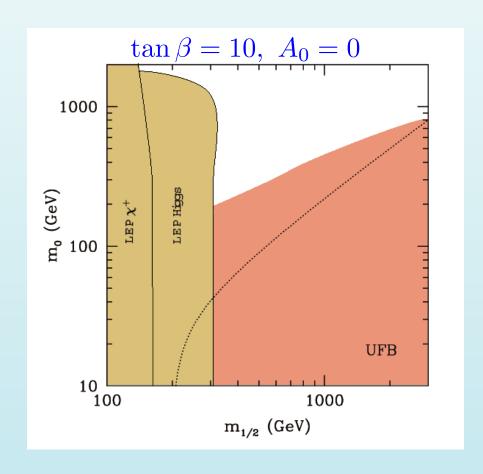

$$D/H+Y_p+^7Li/H+^3He/D+^6Li/^7Li$$

Thermal production

$$\tan \beta = 10, \ m_{1/2} = 500 \text{GeV}, \ m_0 = 50 \text{GeV}(\tilde{\tau} \text{NLSP})$$

$$\Omega_{\tilde{G}}h^2 = \Omega_{\tilde{G}}^{TP}h^2 + \Omega_{\tilde{G}}^{NTP}h^2$$

$$T_R \lesssim 3 imes 10^9 \; {
m GeV} \; {
m for} \; m_{\tilde{G}} \sim 30 \; {
m GeV}$$

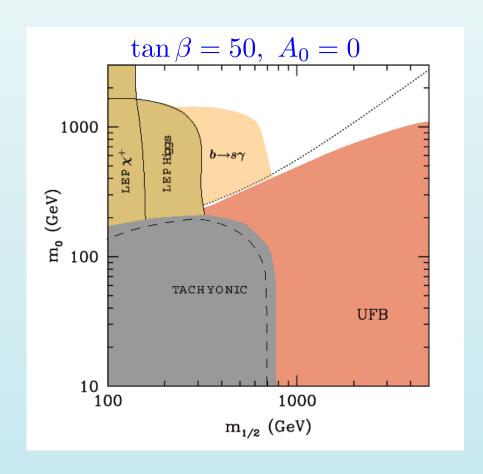

UFB constraints

Two types of constraints:

- charge and/or color breaking (CCB) minima
- unbounded from below (UFB) directions (UFB-1,2,3)
 - \Rightarrow Among them, UFB-3= $\{H_u, \nu_{L_i}, e_{L_j}, e_{R_j}\}$, $i \neq j$ direction leads to electric charge breaking also (the strongest constraints) [Casas, Lleyda, Muñoz('96)]

Condition

$$V_{\text{UFB-3}}(Q = \hat{Q}) > V_{\text{real min}}$$

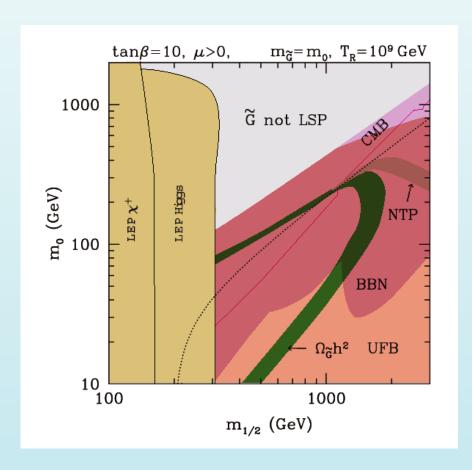

UFB constraints

Two types of constraints:

- charge and/or color breaking (CCB) minima
- unbounded from below (UFB) directions (UFB-1,2,3)
 - \Rightarrow Among them, UFB-3= $\{H_u, \nu_{L_i}, e_{L_j}, e_{R_j}\}$, $i \neq j$ direction leads to electric charge breaking also (the strongest constraints) [Casas, Lleyda, Muñoz('96)]

Condition

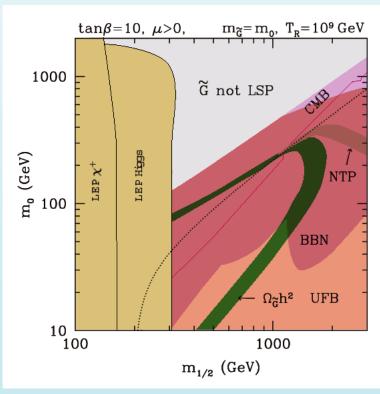
$$V_{\text{UFB-3}}(Q = \hat{Q}) > V_{\text{real min}}$$


UFB constraints

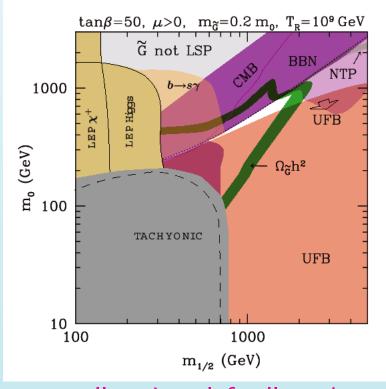
Two types of constraints:

- charge and/or color breaking (CCB) minima
- unbounded from below (UFB) directions (UFB-1,2,3)
 - \Rightarrow Among them, UFB-3= $\{H_u, \nu_{L_i}, e_{L_j}, e_{R_j}\}, i \neq j$ direction leads to electric charge breaking also (the strongest constraints) [Casas, Lleyda, Muñoz('96)]

Condition

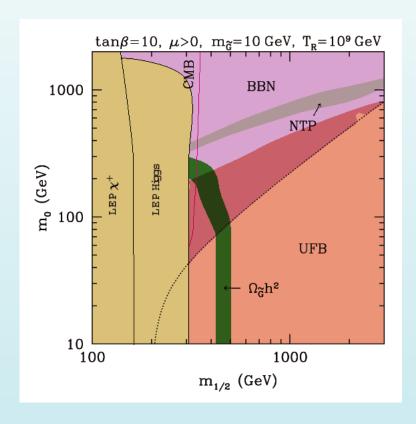

$$V_{\text{UFB-3}}(Q = \hat{Q}) > V_{\text{real min}}$$

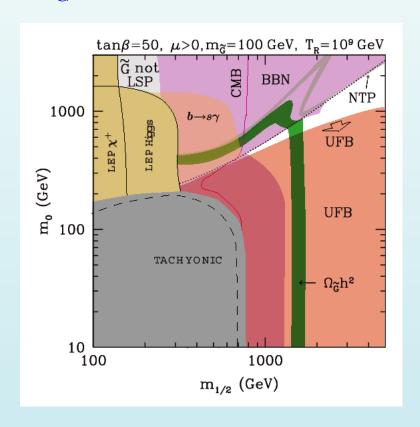
Combining UFB and BBN


For $T_R = 10^9$ GeV,

• $m_{\tilde{G}} = m_0$, $\tan \beta = 10$

all excluded


• $m_{\tilde{G}} = 0.2m_0$, $\tan \beta = 50$


small regions left allowed

COSMO 05, Bonn, 28 Aug - 1 Sep '05

• $m_{\tilde{G}} = 10 \text{ GeV}$, $\tan \beta = 10$

• $m_{\tilde{G}} = 100 \text{ GeV}, \tan \beta = 50$

Discussion

- Neutralino NLSP and O(100)GeV Gravitino LSP is disfavored by BBN: neutralino + sub-GeV Gravitino?
- Stau NLSP and Gravitino LSP is a possible combination in CMSSM for O(100) GeV Gravitino with additional Gravitino production: E.g., for thermal production, up to $T_R \simeq 3 \times 10^9 \; {\rm GeV}$ is available
- UFB constraints may be consistent if the lifetime of realistic vacuum is longer than the age of the Universe due to non-trivial cosmology
- Warm property of NTP Gravitino may solve the small scale problem of CDM or [Borgani et al. (1996)]
- Charged stau NLSP decay may suppress the matter power spectrum on small scales due to the coupling of charged stau to the photon-baryon system [Sigurdson, Kamionkowski (2004)] and/or induces the scale dependent spectral index [Profumo et al. (2005)].