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INFLATION: period of quasi-exponential expansion, explaining the FLATNESS,

ISOTROPY, HOMOGENEITY of the Universe, the absence of UNWANTED RELICS

and producing the initial SMALL PERTURBATIONS.

How to sustain inflation ???

⇒ USE THE POTENTIAL ENERGY OF A SCALAR FIELD φ AS AN EFFECTIVE COSMOLOGICAL CONSTANT
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⇒ The scalar field has to

slow roll in an

ALMOST FLAT POTENTIAL

such that

φ̈ ≪ 3Hφ̇ ⇒ 3Hφ̇ = −V ′

⇒ slow roll expansion



Testing inflation:
Single field

inflation
⇐⇒ Flat Potential
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so we expect n′ ∝ (n − 1)2 < |n − 1|!!!

Surprisingly WMAP seemed to require a large running...; possible for large ξ, but are

there “natural” models giving it ? ⇒ RUNNING MASS model !



Another motivation for the running mass...:
SUSY broken

in inflation
=⇒ SUGRA !

A model is defined by superpotential W (Φ) & Kähler potential K(Φ, Φ̄)

L = Kn∗m∂µΦ̄n∂µΦm − V (Φ, Φ̄)

V (Φ, Φ̄) = eK(Φ,Φ̄)
(
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Take a canonical Kähler K = ΦnΦ̄n and we have
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so that from the exponential one obtains

V ′′ = V + .... → η ≃ 1 η problem

NO SLOW ROLL POSSIBLE IN SUGRA ?!

There are a couple of ways out... ... one of them: the running mass !



[Stewart ’96, ’97]

The running mass model: φ → flat direction of the V ′
SUSY (φ) = 0

SUSY potential

SUSY breaking generates a soft mass for φ: V (φ) = V0 +
1

2
m2φ2 + . . . for φ < MP .

At tree level, for a generic scalar field one has naturally |m2| ≃ V0/M
2
P η problem !

→ V (φ) is NOT flat at high scale

But if the inflaton field interacts not so weakly, the one loop corrections to the potential give

m2 → m2(Q = φ) running mass

The running of the mass can flatten the potential somewhere in the region φ < MP .

⇓
Slow roll inflation



In general any type of coupling can be responsible for the inflaton’s mass running, we have in fact

dm2

d log(Q)
= −2C

π
αm̃2+

D
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s

gauge Yukawa

For the mechanism to work, the inflaton has to couple sufficiently strongly, but still in the perturbative

regime... Different realizations exist depending on the sign of the running and the initial conditions:

φ
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What are the observable consequences of non-weakly coupled inflaton ???



A ”strongly” scale-dependent n(k) and PR(k) !

n(k) − 1 ≪ 1 on

cosmological scales
⇒ linear expansion

around pivot φ0 (↔ k0)

So take the running mass as m2(φ) ≃ m2(φ0) + c ∗ log

(

φ

φ0

)

where c ∝ dm2

d log(Q) (φ0)

Then defining φ∗ by V ′
lin(φ∗) = 0 and introducing the parameter s = c log(φ∗/φ0), we have
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− c and n′(k) = 2sc

(
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)c

→ ξ!

“Strong (exponential !)” scale dependence !!

NOTE: s, c are related to physical parameters rescaled by the inflationary Hubble scale H2
I :

c ≡ −βm(φ0)

3H2
I

s +
1

2
c ≡ m2(φ0)

3H2
I

c suppressed by a coupling, s also to have slow roll...



Look for such strong scale dependence in the data, trying to extend the lever arm as far as possible:

[Figure by M. Tegmark]

• CMB: first year WMAP data

astro-ph/0302207

• LSS: Sloan Digital Sky Survey results

for the galaxy power spectrum

astro-ph/0310723

• LSS: Sloan Digital Sky Survey results

on Lyman-α

astro-ph/0405013 & 0407372



What are the constraint from the new data for s, c in such models ?

[LC, Lyth, Melchiorri & Odman astro-ph/0408129]

WMAP+SLOAN+Ly-α

WMAP+SLOAN

WMAP
WMAP strongly constrains

along the direction s = c, i.e.

n(k0) − 1 = 0

Theoretically expected

region

Ly–α data tighten the bound

on scale dependence and

require

|c| ≤ 0.12



Look at the constraints in the n′
0 vs n0 plane instead

WMAP+SLOAN+Ly-α

WMAP+SLOAN

WMAP

NOTE: negative n′
0 is allowed by

the model only for

n′
0 ≤ − (n0 − 1)2

4

due to the dependence on s, c.

The rest of the parameter space is

unphysical !

Fitting for arbitrary n0, n
′
0 is not

equivalent as fitting for the running

mass model !

Again the most stringent bound on

n′
0 comes from Ly–α data giving

n′
0 ≤ 0.2



Compare the result with the fit for a general Taylor expansion: n(k) = ns + αs log

(

k

k0

)

.

Using the same data Seljak et al. (astro-ph/0407372) find, contrary to WMAP,

ns = n0 = 0.977+0.025
−0.021

αs = n′
0 = −0.003 ± 0.010

NO RUNNING !
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That is fully compatible with our result; note that the data cannot yet distinguish between the different

parameterizations ! In fact αs ≤ 0.2...



What are the bounds on the “physical parameters” ?

m2(φ0)
3H2

I

WMAP+SLOAN+Ly-α

c ∝ m′2(φ0)
3H2

I

Strong running and therefore large inflationary

scale is disfavoured...

From the WMAP normalization

HI = 2πP1/2
R |φ0||s| ∼ 3 × 10−4|φ0||s|

and assuming linear running from MP

m2(φ0) ≃ 0 → φ0

MP
∼ exp

(

− 1

|c|
|m2(MP )|

3H2
I

)

Small |c| implies φ0 ≪ MP and therefore also

HI ≪ φ0 ≪ MP ...

... HI highly sensitive to c !



Connect to simple examples:

→ gauge coupling α dominance for φ in the adjoint representation of SU(N)

c = 2Nα(MP )
π
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3H2

I
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α3(MP ) m̃ gaugino mass

s = − c
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→ Yukawa coupling λ dominance
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Another hint for a running index: REIONIZATION..... ???

Estimate the reionization epoch zR using the Press-Schechter formula as the epoch of collapse of a

fraction f of matter into objects of mass 106M⊙:

1 + zR ≃
√

2σ(106M⊙)

1.7g(ΩM )
erfc−1(f)

where σ is the present linear rms density contrast

computed from the primordial spectrum and the

CDM transfer function and g(ΩM ) accounts for the

suppression of the growth when ΩM < 1.

There is a strong correlation between c and zR:

zR grows cery quickly for large c

s has been fixed to c and c − 0.05.

The red line corresponds to zR = 6.
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Conclusions

• The simple (single field) inflationary paradigm is very successful in describing
present observations. Unfortunately it is still not clear which model of the many
proposed is favoured...

• The running mass model is very well motivated from the particle physics point of

view and has a characteristic observational signature

→ scale-dependence of the spectral index !

• Present data allow still a relatively strong scale-dependence and cannot yet
exclude this type of models.

• MORE DATA are expected soon (WMAP...?!?) and then the scale-dependence

will be better constrained or detected.


