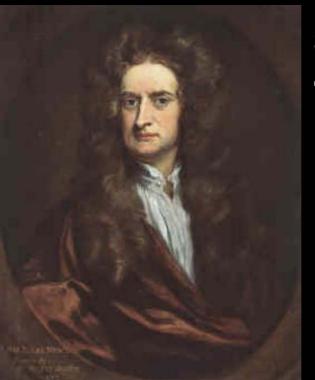
# Photon Mixing in Domain Walls and Cosmic Coincidences

Malcolm Fairbairn

Stockholm University

# **The Coincidence Problem**


- Observations of Type 1a supernovae suggest  $\Omega_{\Lambda}$ =0.7,  $\Omega_{\rm M}$ =0.3
- That means  $\rho_{\Lambda} = \rho_{M}$  at z=0.3
- Does this need to be explained?
- Quintessence models exist, but require fields with masses m<sub>o</sub>=10<sup>-33</sup>eV=(Hubble radius)<sup>-1</sup>



#### **Anthropic Arguments:**

If  $\rho_\Lambda$  was even slightly larger, galaxies could not form (Martel, Shapiro & Weinberg astro-ph/9701099) and life could not exist





So is it time to give up the scientific method?

Or can we think of an alternative?



# Photon-Axion Mixing

Csaki, Kaloper & Terning hep-ph/0111311

ultra light axion, photons from supernovae convert into axions in the intergalactic magnetic field, gives the illusion of  $\Lambda>0$ 

$$L = -\frac{1}{2} \left( \partial^{\mu} a \partial_{\mu} a + m^{2} a^{2} \right) + \frac{a}{M} F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

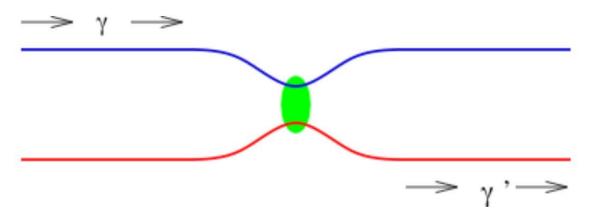
probability of a photon remaining a photon:-

$$P_{\gamma \to \gamma} = 1 - \frac{B^2 \omega^2}{m^4 M^2 + B^2 \omega^2} \sin^2 \left[ \frac{\sqrt{m^4 M^2 + B^2 \omega^2}}{\omega M} L \right]$$

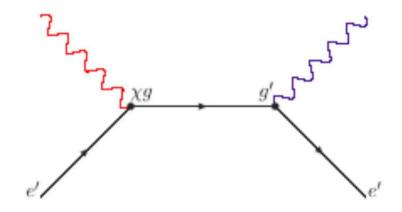
to get right dimming, we require M/B=Hubble Length to suppress oscillations of CMB photons:-  $\omega_{optical} > \frac{m^2 M}{B} > \omega_{cmb}$  intergalactic electrons cause problems

## **Mixing with Paraphotons**

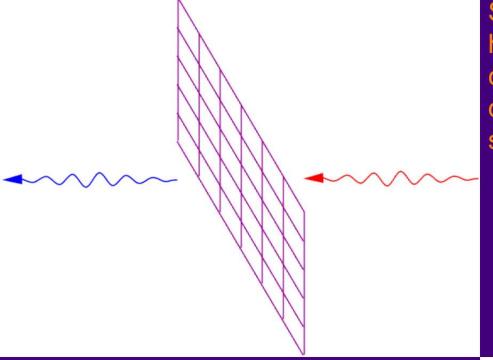
$$L = -\frac{1}{4g^2} F^{\mu\nu} F_{\mu\nu} - \frac{1}{4g'^2} G^{\mu\nu} G_{\mu\nu} - \frac{\chi}{g'g} F^{\mu\nu} G_{\mu\nu}$$


$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \qquad G_{\mu\nu} = \partial_{\mu}A'_{\nu} - \partial_{\nu}A'_{\mu}$$

$$G_{\mu\nu} = \partial_{\mu} A'_{\nu} - \partial_{\nu} A'_{\mu}$$


Additional U(1) gauge field weakly coupled to electromagnetism ( $\chi <<1$ ) except inside the core of domain walls

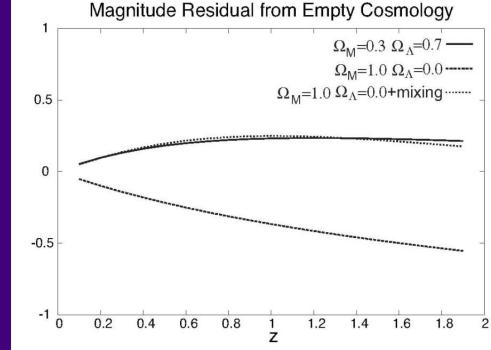
#### **Photon Mixing in Domain Walls**


kinks in relative position of branes in compact space



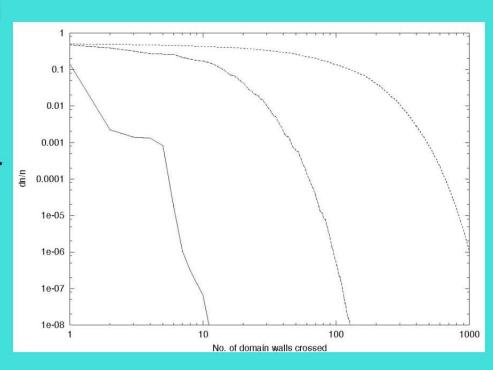
Inside core, branes closer than mass of fields in bulk




Photons and paraphotons massless:need population of paraelectrons to introduce refractive index.



Since there is one domain wall per horizon, approximately 50% of photons created at redshift z=1 are lost. This does not depend on any of the energy scales in the model.


$$P_{\gamma \to \gamma} = \frac{1}{2} \left( 1 + e^{-N(z)} \right)$$

Where N(z) is the number of domain walls crossed by a photon emitted at redshift z



#### Isn't this dangerous for CMB photons?

- CMB photons reaching earth today have crossed ~1000 domain walls
- Distortion due to mixing of photons less than 10<sup>-5</sup> rather quickly ~10 walls for 50% probability of mixing per wall
- Para-electrons need to be cool to avoid SZ effect while photons are on other brane



### Conclusions

- Photon mixing in Domain walls changes luminosity distance
- No mass scale set to inverse Hubble length required
- Observers at any redshift conclude universe has recently started to accelerate