Dark Energy at Future Colliders: Testing the True Nature of Dark Energy in Black Hole Evaporations

Jörg Jäckel

Bonn, September 2005

Michael Doran

astro-ph/0501437

DESY

- 1. Introduction
- 2. Black Holes in LED
- 3. Large Extra Dimensions
- 4. A Few Details
- 5. Conclusions and Outlook

1. Introduction

$\Lambda \text{ or } \phi ?$

Cosmological Observations

• If, $w \neq -1$ we will eventually detect it!

 But: Suppose w continues to converge towards -1?

It is impossible to exclude Quintessence with cosmological observations

Cosmological Observations

• Why?

It is possible to "fit" any evolution history of the scale factor with a suitable potential!

Direct Detection Of Quintessence

 Next to impossible!
 Interactions with ordinary matter are of at most gravitational strength!

 A possible exception: Some theories of varying α suggest violations of the equivalence priciple (fifth force) which should be detectable in the near future!

2. Black Holes

a way out

Difference between Λ and ϕ

- Quintessence ϕ is a dynamical field
- It has particle like excitations (in contrast to Λ)

• is a "true" degree of freedom

Idea: Count the total # of d.o.f.

Thermal Democracy: Counting d.o.f.

 An ideal black body radiates into all thermalized degrees of freedom with equal intensity!

radiated energy/time ~ # d.o.f.

 But! Small interaction strength prevents Quintessence from reaching thermal equilibrium!

Black holes

 Black holes are a black body radiator with Hawking temperature

$$T_{\rm H} = \frac{n+1}{4\pi r_{\rm H}} = \frac{n+1}{4\sqrt{\pi}} M_{\star} \sqrt[n+1]{\left(\frac{M_{\star}}{M_{\rm BH}}\right) \left(\frac{n+2}{8\Gamma\left(\frac{n+3}{2}\right)}\right)}.$$

- "Thermal equilibrium" for all particles (interacting with gravity)
- All particles with M<<T are emitted with `equal' probability!

$$\implies \# of \ d.o.f. \sim \frac{E}{E_x}$$

This can Exclude Quintessence!!

 If we can account for all measured d.o.f. we have excluded Quintessence! Astrophysical Black Holes • But: Typical astophysical BH have $T \sim 62 \frac{M_{\odot}}{M} nK$ • Too cold + too far away \rightarrow radiation not detectable

We need small black holes?!

Yes, small, but not too small

 $0.1 \,\mathrm{eV} \lesssim T \lesssim 1 \mathrm{TeV}$ $1t = 10^{14} M_{\mathrm{P}} \lesssim M \lesssim 10^{27} M_{\mathrm{P}} = 10^{13} t$

- Upper limit (in T) ensures that we have sufficient knowledge of "standard model particles"
- Lower limit: enough radiation

	Starting bid:	10^32 GeV	Seller information
S.		Place Bid >	Little Sucker (0 😭)
	<i>'≆Buylt <mark>Now</mark></i> price:	10^40 GeV Buy It Now >	Feedback Score: 0 Positive Feedback: No Feedback Member since briefly after the The Big Bang in The Universe
	Time left:	Until decay time depends on mass, ends somewhere in the future	Read feedback comments
	Start time:	The Collsision	Ask seller a question
	History:	O bids	View seller's other items
0	Item location:	somewhere in the local group The Universe	PayPal Buyer Protection NEWI
Stock Photos	Ships to:	No shipping available	Free Coverage now up to
Larger Picture	Shipping costs:	has to be picked up by customer	\$1,000. <u>See eligibility</u> .
<u> </u>	Shipping, p	ayment details and return policy	
Description			

Description		
Black Holes		
🐝 🛀 🏑 🖬 🗷		-0-6* //
🏽 🚮 🔯 🥭 😭 🚮 🕢	» 🛐 C 🚰 t 📴 M 🕵 bl 👔 D 🐧 C 🖄 C 🖺 b 🙀 e 🥸 J 🙀 G	😡 🚱 🆓 🕮 DE 🚀 🗛 🖉 15:11

3. Large Extra Dimensions

Large Extra Dimensions

- Luckily: In theories with LED the Planck mass is smaller
- $S = \int d^{4+n} x \sqrt{g} [M_{\star}^{2+n} R + ...]$ $\approx V_{ED} \int d^{4} x \sqrt{g_{4}} [M_{\star}^{2+n} R_{4} + ...]$

 $\longrightarrow M_{\mathbf{P}}^2 \sim V_{ED} M_{\star}^n \sim l^{2+n} M_{\star}^n$

Large Extra Dimensions

• E.g. $l = 200 \mu m \sim \frac{1000}{\text{eV}}$ n = 2 $10^{54} \text{eV}^2 \sim M_{\text{P}}^2 \sim l^n M_{\star}^{2+n}$

$\rightarrow M_{\star} \sim 1 \mathrm{TeV}$

For n>5 this value is experimentally allowed

Black Holes in Large Extra Dimensions

• BH with desired T may be produced at Colliders (LHC), e.g.

$M = 10 \text{TeV}, \ M_{\star} = 1 \text{TeV}$ $\longrightarrow \quad T \approx 55 - 580 \text{GeV}$

4. A Few Details

Not all particles are massless :-)

- Heavy particles (M \gtrsim T) are supressed by the Boltzmann factor

We do not need to know all particles with M>>T, only "light" particles contribute

Black holes are... grey

- BH are not ideal black bodies! (gravitational) potential well,
 some reflection back into the BH
- So called greybody factors account for this.
- This leads to different efficiencies for different particle types (scalars, fermions, gauge bosons)
- This may be used to determine the # of extra dimensions!

What accuracy do we need?

• Quintessence adds one d.o.f. • we need an accuracy $acc. \sim \frac{1}{\# d.o.f. total} \sim 0.5\%$

Standard model has roughly 100 d.o.f.

Bonus Level: Neutrinos

- Light Dirac neutrinos have four (light) d.o.f.
- See-sawed Majorana neutrinos 2 d.o.f.

We can test for the nature of neutrinos

Neglected Stuff: Phases of Black Hole Decay

- Balding Phase: Assymetry and other 'hair`(quantum numbers) are lost
- Spin-Down phase: angular momentum is lost
- Schwarzschild phase: This is what we discussed
- Planck phase: Quantum gravity regime

5. Conclusions

Conclusions

- Cosmological observations have a hard time distiguishing between Λ and ϕ
- A and \$\phi\$ can be distinguished by counting d.o.f.
- Black holes are provide black bodies with Quintessence in thermal eq.
- Measure the energy deposited into known particles
 total # of d.o.f.
- If $M_P \sim 1 \text{TeV}$ measurement may be feasible

Outlook

- Calculation of massive grey body factors for particles with spin
- Grey body factors for gravitons???