Cosmo 05, August 29, 2005 Bonn, Germany

Braneworld Flux Inflation

Sugumi Kanno, Jiro Soda & David Wands

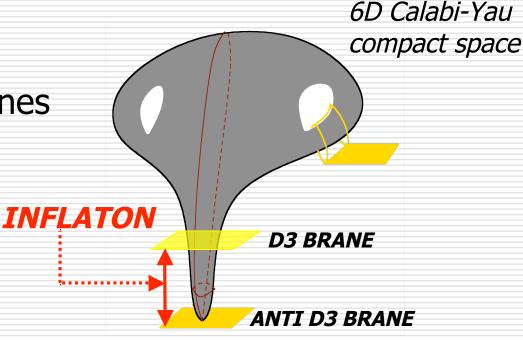
Kyoto University & Portsmouth University JCAP **08**, 002 (2005); hep-th/0506167

Introduction

- Results from WMAP strongly support the idea of the inflationary universe.
- String theory is a candidate for theory of everything.
- We need to know what plays the role of an inflation.
 - Construct an inflation model in string theory.

Motivation

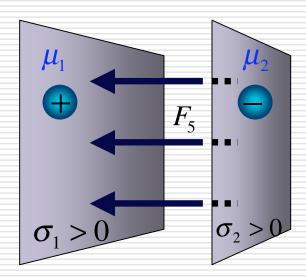
Kachru, Kallosh, Linde, Maldacena, McAllister & Trivedi (2003)


Inflaton is the distance between D-brane and anti-D-brane.

Inflation is realized *geometrical* manner without introducing

an ad hoc scalar field.

However, self-gravity of branes are not properly treated.



Flux-Driven Inflation

5D Action

$$S = \frac{1}{2\kappa^{2}} \int d^{5}x \sqrt{-g} \left[\Re - 2\Lambda \right] + \sum_{i} \int d^{4}x \sqrt{-h_{i}} \left[-\sigma_{i} + L_{matter}^{i} \right]$$
$$-\frac{1}{2 \cdot 5!} \int d^{5}x \sqrt{-g} F_{5}^{2} + \sum_{i} \mu_{i} \int C_{4}$$

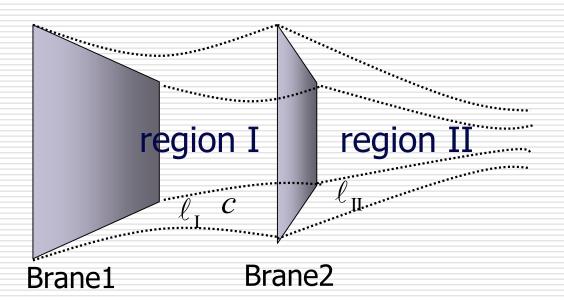
where

Brane charge 4-form potential field

 $F_5 = dC_A$, which can change the effective cosmological constant (C.C.) in the bulk

5-form e.o.m.
$$d * F_5 = 0$$
, $* F_5 = c(x) \longrightarrow dc = 0$ $\therefore c = const.$

$$\therefore c = \text{const.}$$


$$\Lambda_{\text{brane}} = \frac{\kappa^4 \sigma^2}{36} + \frac{\Lambda}{6} + \frac{\kappa^2 c^2}{12}$$

Inflation is terminated by the brane collision.

Strategy

- Except for a collision point, we apply the moduli approximation method.
 - First, we obtain the moduli of static solution.
 - Next, lift them up to fields.
- At the collision point, we perform a fully 5D analysis.

Moduli of Static Solution

Junction condition

$$\kappa^2 \sigma_1 = \frac{6}{\ell_1}, \quad \kappa^2 \sigma_2 = \frac{3}{\ell_{II}} - \frac{3}{\ell_1}$$
 $\mu_1 = -2\mu_2 = -2c$

Bulk geometry

$$ds_{I}^{2} = dy^{2} + e^{-2\frac{y}{\ell_{I}}} \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$
$$ds_{II}^{2} = dy^{2} + e^{-2\frac{y}{\ell_{II}}} \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

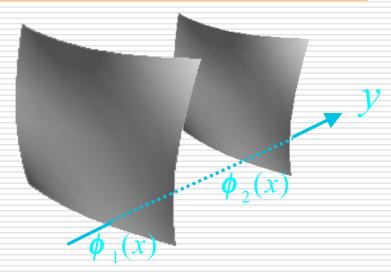
where

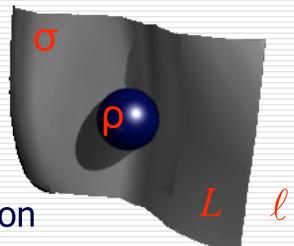
$$\frac{6}{\ell_{\mathrm{I}}^2} = -\Lambda - \frac{\kappa^2 c^2}{2}, \qquad \frac{6}{\ell_{\mathrm{II}}^2} = -\Lambda$$

Brane positions

$$y = \phi_1, \quad y = \phi_2$$
moduli moduli

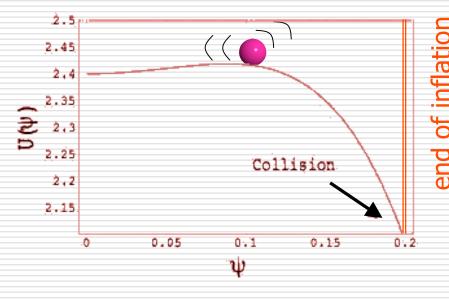
Moduli approximation method


Brane Position (moduli field)


$$y = \phi_1(x) , \quad \phi_2(x)$$

Low energy
$$\varepsilon \equiv \frac{\rho}{\sigma} \sim \left(\frac{\ell}{L}\right)^2 \ll 1$$

$$dS_{5}^{2} = dy^{2} + a_{i}^{2}(y)g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$$
where $a_{I}(y) = e^{-\frac{y}{\ell_{I}}} a_{II}(y) = e^{-\frac{y}{\ell_{II}}}$


→ Derive the low energy effective action

e-folding number

Radion potential

 $U = U_0 - 4H_0^2 \frac{\psi^2}{2}$ (tachyonic)

 H_0 : Hubble at the top

In the induced metric frame, the universe is always inflating.

the universe is always inflating.

e-folding number

$$N \equiv \log \left(\frac{\psi_*}{\psi_0} \right)$$
 ψ_* : at collision
 ψ_0 : initial value

$$\sim \log \left(5\sqrt{6} \frac{M_{\rm pl}}{H_0} \coth^{-1} \frac{1}{\sqrt{1 - \ell_{\rm II} / \ell_{\rm I}}} \right)$$

Sufficient inflation is possible.

Brane Collision

We consider the simplest case of a completely inelastic collision.

In order to cause a collision, $H_2 > H_1$

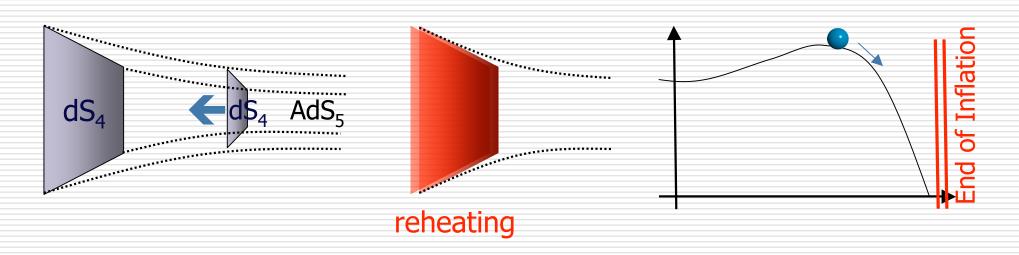
Require no conical singularity around this collision point.

Neronov (2001); Langlois, Maeda & Wands (2002)

Energy conservation Momentum conservation

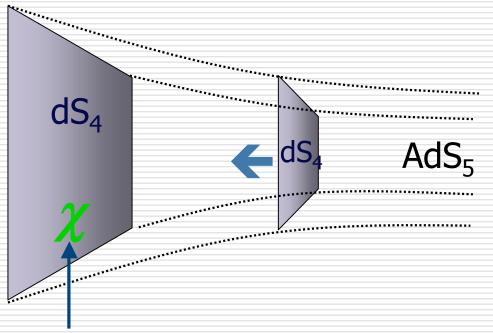
$$\rho_f = \sigma_1 + 2\sigma_2$$

$$\rho_f = \sigma_1 + 2\sigma_2 \qquad H_f = \frac{\ell_I}{\ell_{II}} \left[H_1 - (1 - \ell_{II} / \ell_I) H_2 \right]$$


In order to obtain an expanding universe after the collision,

$$H_f > 0 \implies H_1 > (1 - \ell_{\text{II}} / \ell_{\text{I}})H_2$$

Our scenario is realized under the condition


$$\frac{H_1}{1 - \ell_{\text{II}} / \ell_{\text{I}}} > H_2 > H_1 \qquad \text{Note that } \ell_{\text{I}} > \ell_{\text{II}}$$

Spectrum of curvature perturbation

- ullet radion perturbation ullet brane curvature perturbation , ζ
- 4D theory breaks down at brane collision (→ reheating)
- 5D energy-momentum conservation \rightarrow conserved perturbation, ζ
- ... but m^2 = -4H^2 at maximum → steep red spectrum

Brane Curvaton

Moroi & Takahashi (2001) Enqvist & Sloth (2002) Lyth & Wands (2002)

light scalar degree of freedom on brane sees de Sitter expansion → scale-invariant spectrum

decays after collision → primordial density perturbation

Summary

- We proposed a geometric brane inflation model driven by the flux.
- Brane collision terminates the inflation.
- We gave the rule for evolution through the collision using the 5D conservation low.
- Radion has large tachyonic mass.
 - fine-tuned initial conditions for sufficient inflation.
- Curvaton type field gives scale-invariant spectrum.