Constraining the Cosmological Parameters by the Cosmic Inversion Method

<u>Noriyuki Kogo (Osaka/YITP),</u> Misao Sasaki (YITP), Jun'ichi Yokoyama (RESCEU)

astro-ph/0504471

1. Introduction

Parameter Estimation

Primordial spectrum

Assumption: $k^{3}P(k) = Ak^{n_{s}-1}$

Best-fit parameters $h = 0.72 \pm 0.05$ $\Omega_b h^2 = 0.024 \pm 0.001$ $\Omega_m h^2 = 0.14 \pm 0.02$ $\tau = 0.166_{-0.071}^{+0.076}$ $A = 0.9 \pm 0.1$ $n_s = 0.99 \pm 0.04$

"Precisely determined." But, obtained values depend on the assumption regarding a functional form of P(k).

Cosmological Parameters & P(k)

The reason why the cosmological parameters are precisely determined is that the functional space of P(k) is a priori restricted by the assumption of a simple functional form of P(k).

• W. H. Kinney, PRD 63, 043001 (2001)

• T. Souradeep et al., astro-ph/9802262

Is it possible to constrain the cosmological parameters without any assumption on the functional form of P(k)?

"Cosmic Inversion"

Is it possible to constrain the cosmological parameters by requiring that resultant P(k) is independent of the contribution of the polarization in our method?

2. Inversion Method

M. Matsumiya, M. Sasaki, & J. Yokoyama, PRD 65, 083007 (2002)
M. Matsumiya, M. Sasaki, & J. Yokoyama, JCAP 0302, 003 (2003)
N. K., M. Sasaki, & J. Yokoyama, PRD 70, 103001 (2004)

CMB Anisotropies

Assumptions: adiabatic fluctuations, Gaussianity, scalar modes only

Temperature fluctuations

• Polarization

$$\begin{aligned} \Theta(\hat{\boldsymbol{n}}) &= \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{c} a_{\ell m}^{T} Y_{\ell m}(\hat{\boldsymbol{n}}), & z_{*} \approx 1089 \\ \left(Q \pm i U \right)(\hat{\boldsymbol{n}}) &= \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{c} \left(a_{\ell m}^{E} \pm i a_{\ell m}^{B} \right)_{\pm 2} Y_{\ell m}(\hat{\boldsymbol{n}}). \\ & \text{B-modes vanish.} \end{aligned}$$

Angular power spectrum

$$C_{\ell}^{X\bar{X}} \equiv \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} \left\langle a_{\ell m}^{X*} a_{\ell m}^{\bar{X}} \right\rangle = \frac{2}{\pi} \int_{0}^{\infty} k^{2} dk \frac{K_{\ell}^{X\bar{X}}(\eta_{0}, k) P(k)}{\text{Kernel (Transfer functions)}}$$

- <u>Thin LSS approximation</u> Perform time integration of the transfer functions within the thickness of the last scattering surface (LSS).
- Small angle approximation

 $r = 2d\sin\frac{\theta}{2} \ll d, \quad \Leftrightarrow \quad \ell \ge O(10).$

Inversion Formula

Temperature + Polarization (TT + EE)

Almost independent of P(k).

-0.5

-1

-1.5 L

500

1000

1500

kd

2000

2500

3000

$$P(k_{s}) = \frac{S^{TT}(k_{s}) + \alpha S^{EE}(k_{s})}{k_{s} \left[g^{2}(k_{s}) + \alpha h^{2}(k_{s}) \right]}, \text{ for } f(k_{s}) = 0.$$

Boundary Conditions

Test

No spurious sharp peak or dip near the singularities. Positions of the TT and EE singularities are different.

EE

3. Constraining Cosmological Parameters

Strategy

$$\square D \equiv \int_{k_{\min}}^{k_{\max}} \frac{dk}{k} \left[k^3 P_{\alpha_1}(k) - k^3 P_{\alpha_2}(k) \right]^2, \quad \alpha_1 \neq \alpha_2,$$

 $P_{\alpha}(k)$: reconstructed P(k) for a certain value of . We speculate that D takes its minimum value with respect to variation of the cosmological parameters at correct values of the these parameters.

Dependence of D

- With no observational error.
- For three different shape of P(k).
- Assumed cosmological parameters are h = 0.70, $\Omega_b = 0.050$, $\Omega_m = 0.30$, $\Omega_{\Lambda} = 0.70$.
- Vary one of h, $\Omega_b h^2$, $\Omega_m h^2$, $\Omega_K = 1 \Omega_m \Omega_\Lambda$, individually, with the others fixed.

We find that regardless of the shape of P(k), D as a function of each cosmological parameter takes its minimum value at correct value of that parameter in any case.

Error Estimation

Make simulated data by drawing a random number from a Gaussian distribution with the PLANCK observational error around a theoretical spectrum.

Calculate the value of *D* by varying the cosmological parameters and finding the minimum of *D*.

Construct histograms of the values of the cosmological parameters at the minimum of *D* from the 1000 realizations.

Estimate probability distributions and the errors of the cosmological parameters.

1D Parameter Search

Vary one of h, $\Omega_b h^2$, $\Omega_m h^2$, Ω_K , individually, with others fixed.

4. Summary

• We have investigated the possibility to constrain the cosmological parameters in the context of the reconstruction of P(k).

• We required that the reconstructed P(k) dose not depend on the contribution of the polarization.

• We found that the cosmological parameters can be constrained without any assumption on the functional form of P(k).

Future Issues

Full multi-dimensional analysis.
Tensor modes (B-mode polarization).