Moduli Stabilization in Heterotic Flux Compactifications

André Lukas

University of Oxford

Outline

- Introduction: Compactifications, moduli and flux
- Manifolds with SU(3) structure
- Heterotic string and SU(3) structure
- Half-flat mirror manifolds
- Generalized half-flat manifolds
- Conclusions and outlook

Outline

- Introduction: Compactifications, moduli and flux
- Manifolds with SU(3) structure
- Heterotic string and SU(3) structure
- Half-flat mirror manifolds
- Generalized half-flat manifolds
- Conclusions and outlook

Based on: hep-th/0507173 and hep-th/0408121

Outline

- Introduction: Compactifications, moduli and flux
- Manifolds with SU(3) structure
- Heterotic string and SU(3) structure
- Half-flat mirror manifolds
- Generalized half-flat manifolds
- Conclusions and outlook

Based on: hep-th/0507173 and hep-th/0408121

In collaboration with: B. de Carlos (Sussex), S. Gurrieri (Ky-

oto), A. Micu (Sussex)

Compactification of D = 10 theory

Compactify on d=6 space with topology X

Metric: $ds^2=dx^\mu dx^\nu \eta_{\mu\nu}+g_{mn}(y,b^i)dy^m dy^n$, where $g_{mn}(b^i)$ are metrics on X with moduli b^i .

Compactification of D = 10 theory

Compactify on d=6 space with topology X

Metric: $ds^2=dx^\mu dx^\nu \eta_{\mu\nu}+g_{mn}(y,b^i)dy^m dy^n$, where $g_{mn}(b^i)$ are metrics on X with moduli b^i .

 $ightarrow b^i$ are scalar fields in four dimensions

Compactification of D = 10 theory

Compactify on d=6 space with topology X

Metric: $ds^2=dx^\mu dx^\nu \eta_{\mu\nu}+g_{mn}(y,b^i)dy^m dy^n$, where $g_{mn}(b^i)$ are metrics on X with moduli b^i .

 $ightarrow b^i$ are scalar fields in four dimensions

Schematic structure of moduli space:

d=6 dim. spaces with covariantly constant spinor η , $\nabla \eta = 0$ (\rightarrow Ricci-flat)

d=6 dim. spaces with covariantly constant spinor η , $\nabla \eta = 0$ (\rightarrow Ricci-flat)

$${f 4}_{SU(4)}
ightarrow ({f 1}+{f 3})_{SU(3)}$$

d=6 dim. spaces with covariantly constant spinor η , $\nabla \eta = 0$ (\rightarrow Ricci-flat)

$${f 4}_{SU(4)}
ightarrow ({f 1}+{f 3})_{SU(3)}$$

 $\rightarrow X$ has SU(3) holonomy

d=6 dim. spaces with covariantly constant spinor η , $\nabla \eta = 0$ (\rightarrow Ricci-flat)

$$\mathbf{4}_{SU(4)}
ightarrow (\mathbf{1} + \mathbf{3})_{SU(3)}$$

 $\rightarrow X$ has SU(3) holonomy

Introduce forms:

$$J_{mn} = \eta^{\dagger} \gamma_{mn} \eta$$

 $\Omega_{mnp} = \eta^{\dagger} \gamma_{mnp} \eta$

Kahler form complex structure

Calabi-Yau spaces, cont'd

On a Calabi-Yau space

$$\nabla J = 0 \Rightarrow dJ = 0$$

$$\nabla \Omega = 0 \Rightarrow d\Omega = 0$$

Calabi-Yau spaces, cont'd

On a Calabi-Yau space

$$\nabla J = 0 \Rightarrow dJ = 0$$

$$\nabla \Omega = 0 \Rightarrow d\Omega = 0$$

Ricci-flat metric in one-to-one correspondence with

 $J=t^i\omega_i$ and $\Omega=Z^A\alpha_A-\mathcal{G}_A\beta^A$, where $\omega_i,\,i=1,\ldots,h^{1,1}$ are two-forms and $\alpha_A,\,\beta^A,\,A=0,\ldots,h^{2,1}$ are three-forms. Note: $d\omega_i=d\alpha_A=d\beta^A=0$.

Calabi-Yau spaces, cont'd

On a Calabi-Yau space

$$\nabla J = 0 \Rightarrow dJ = 0$$
 $\nabla \Omega = 0 \Rightarrow d\Omega = 0$

Ricci-flat metric in one-to-one correspondence with

$$J=t^i\omega_i$$
 and $\Omega=Z^A\alpha_A-\mathcal{G}_A\beta^A$, where $\omega_i,\,i=1,\ldots,h^{1,1}$ are two-forms and $\alpha_A,\,\beta^A,\,A=0,\ldots,h^{2,1}$ are three-forms. Note: $d\omega_i=d\alpha_A=d\beta^A=0$.

Kahler moduli complex structure moduli dilaton

Fixing moduli?

Perturbatively, moduli are flat directions, so superpotential $W_{
m pert}=0$.

Fixing moduli?

Perturbatively, moduli are flat directions, so superpotential $W_{\rm pert}=0$.

Non-perturbatively, for example $W_{\rm np} \sim e^{-cT}$ Typical shape of potential:

Fixing moduli?

Perturbatively, moduli are flat directions, so superpotential $W_{
m pert}=0$.

Non-perturbatively, for example $W_{\rm np} \sim e^{-cT}$ Typical shape of potential:

Hard to fix all moduli and potential very steep.

Flux

String theory contains p-forms $A_{I_1...I_p}$ with field strengths F = dA.

Flux: Internal components of F are non-zero, $F_{m_1...m_{p+1}} \neq 0$.

Quantization: $\int_{C \subset X} F \in \mathbf{Z}$

Flux

String theory contains p-forms $A_{I_1...I_p}$ with field strengths F = dA.

Flux: Internal components of F are non-zero, $F_{m_1...m_{p+1}} \neq 0$.

Quantization: $\int_{C \subset X} F \in \mathbf{Z}$

 \rightarrow flux generates a D=4 moduli potential

Example IIB

Flux: NSNS 3-form H and RR 3-form F

Flux superpotential: $W_{\text{flux}} = \int_X (F - iSH) \wedge \Omega$

Full superpotential: $W = W_{\text{flux}}(S, Z^a) + W_{\text{np}}(T^i)$

Example IIB

Flux: NSNS 3-form H and RR 3-form F

Flux superpotential: $W_{\rm flux} = \int_X (F - iSH) \wedge \Omega$

Full superpotential: $W = W_{\text{flux}}(S, Z^a) + W_{\text{np}}(T^i)$ Typical shape of potential:

Example IIB

Flux: NSNS 3-form H and RR 3-form F

Flux superpotential: $W_{\text{flux}} = \int_X (F - iSH) \wedge \Omega$

Full superpotential: $W = W_{\text{flux}}(S, Z^a) + W_{\text{np}}(T^i)$ Typical shape of potential:

Can fix all moduli and less steep.

Heterotic string

Why heterotic?

- Gauge unification natural
- Large number of supersymmetric models
- Allows fermions from 16 of SO(10)

However: Only one type of form, NSNS 3-form H

Heterotic string

Why heterotic?

- Gauge unification natural
- Large number of supersymmetric models
- Allows fermions from 16 of SO(10)

However: Only one type of form, NSNS 3-form H

Can the heterotic string fix all moduli?

Manifolds with SU(3) structure

Still have spinor η on X, but now $\nabla \eta \neq 0$.

Manifolds with SU(3) structure

Still have spinor η on X, but now $\nabla \eta \neq 0$.

However, there exists (con)-torsion κ_m and connection $\Gamma_m^{(T)} = \Gamma_m + \kappa_m$ such that $\nabla^{(T)} \eta = 0$.

If follows:

$$abla^{(T)}J = 0 \Rightarrow dJ = \text{(torsion)}$$
 $abla^{(T)}\Omega = 0 \Rightarrow d\Omega = \text{(torsion)}$

Manifolds with SU(3) structure

Still have spinor η on X, but now $\nabla \eta \neq 0$.

However, there exists (con)-torsion κ_m and connection $\Gamma_m^{(T)} = \Gamma_m + \kappa_m$ such that $\nabla^{(T)} \eta = 0$.

If follows:

$$abla^{(T)}J = 0 \Rightarrow dJ = \text{(torsion)}$$
 $abla^{(T)}\Omega = 0 \Rightarrow d\Omega = \text{(torsion)}$

Such manifolds can be classified by the SU(3) content of the torsion κ .

Heterotic string and SU(3) structure

One expects same set of moduli, S, T^i , Z^a .

Superpotential: $\mathcal{W}(T^i,Z^a)=\int_X\Omega\wedge(H+idJ)$

Heterotic string and SU(3) structure

One expects same set of moduli, S, T^i , Z^a .

Superpotential: $\mathcal{W}(T^i, Z^a) = \int_X \Omega \wedge (H + idJ)$

Gauge-kinetic fct.: f = S + corrections, where $\text{Re}(f) = 1/\alpha$.

Gaugino condensation: $W_{np} = ke^{-cS}$

Heterotic string and SU(3) structure

One expects same set of moduli, S, T^i , Z^a .

Superpotential:
$$\mathcal{W}(T^i,Z^a)=\int_X\Omega\wedge(H+idJ)$$

Gauge-kinetic fct.: f = S + corrections, where $\text{Re}(f) = 1/\alpha$.

Gaugino condensation: $W_{np} = ke^{-cS}$

Full superpotential:

$$W = \mathcal{W}(T^i, Z^a) + ke^{-cS}$$

Consistency of vacuum: $|\mathcal{W}| \ll 1$ at minimum.

Half-flat mirror manifolds

Arise in the context of type II mirror symmetry.

Characterized by: (Gurrieri, Louis, Micu, Waldram, '02)

$$d\omega_i = e_i \beta^0$$
$$d\alpha_0 = e_i \tilde{\omega}^i$$

where $\tilde{\omega}^i$ are 4-forms dual to ω_i and e_i are torsion parameters.

Half-flat mirror manifolds

Arise in the context of type II mirror symmetry.

Characterized by: (Gurrieri, Louis, Micu, Waldram, '02)

$$d\omega_i = e_i \beta^0$$
$$d\alpha_0 = e_i \tilde{\omega}^i$$

where $\tilde{\omega}^i$ are 4-forms dual to ω_i and e_i are torsion parameters.

$$\mathcal{W}=e_iT^i+\epsilon_aZ^a-\mu^a\mathcal{G}_a$$
 electr. electr. magn. torsion flux flux

Half-flat mirror manifolds

Arise in the context of type II mirror symmetry.

Characterized by: (Gurrieri, Louis, Micu, Waldram, '02)

$$d\omega_i = e_i \beta^0$$
$$d\alpha_0 = e_i \tilde{\omega}^i$$

where $\tilde{\omega}^i$ are 4-forms dual to ω_i and e_i are torsion parameters.

$$\mathcal{W}=e_iT^i+\epsilon_aZ^a-\mu^a\mathcal{G}_a$$
 electr. electr. magn. torsion flux

Magnetic torsion?

Simple STZ model

Three moduli: S, T, Z

Kahler- and superpotential:

$$K = -\ln(S + \bar{S}) - 3\ln(T + \bar{T}) - 3\ln(Z + \bar{Z})$$

$$W = eT + \epsilon Z + \frac{i\mu}{2}Z^2$$

$$W = \mathcal{W} + ke^{-cS}$$

Simple STZ model

Three moduli: S, T, Z

Kahler- and superpotential:

$$K = -\ln(S + \bar{S}) - 3\ln(T + \bar{T}) - 3\ln(Z + \bar{Z})$$

$$W = eT + \epsilon Z + \frac{i\mu}{2}Z^2$$

$$W = \mathcal{W} + ke^{-cS}$$

Validity: Need large radius, Re(T) > 1, large complex structure, Re(Z) > 1 and weak coupling Re(S) > 1.

Reminder, D=4 supergravity

Supergravity potential:

$$V = e^K \left(K^{X\bar{Y}} F_X \bar{F}_{\bar{Y}} - 3|W|^2 \right)$$

where
$$F_X = \partial_X W + \partial_X K W$$
, $K_{X\bar{Y}} = \partial_X \partial_{\bar{Y}} K$.

Reminder, D = 4 supergravity

Supergravity potential:

$$V = e^K \left(K^{X\bar{Y}} F_X \bar{F}_{\bar{Y}} - 3|W|^2 \right)$$

where $F_X = \partial_X W + \partial_X K W$, $K_{X\bar{Y}} = \partial_X \partial_{\bar{Y}} K$.

Supersymmetric vacua: $F_X = 0$

Cosmological constant: $V|_{F_X=0} = -3e^K|W|^2 \le 0$

Simple STZ model, results

- All fields stabilized, except for one combination of Im(T) and Im(Z) which is flat.
- $x \equiv c \text{Re}(S) = 1/4 \rightarrow \text{barely weak coupling}$
- difficult to achieve Re(T) > 1 and Re(Z) > 1

Simple STZ model, results

- All fields stabilized, except for one combination of Im(T) and Im(Z) which is flat.
- $x \equiv c \text{Re}(S) = 1/4 \rightarrow \text{barely weak coupling}$
- difficult to achieve Re(T) > 1 and Re(Z) > 1
- → hard to find consistent vacua

General case

Arbitrary number of moduli: S, T^i , Z^a

Superpotential: $\mathcal{W}=e_iT^i+\epsilon_aZ^a+rac{i}{2} ilde{d}_{abc}\mu^aZ^bZ^c$

General case

Arbitrary number of moduli: S, T^i, Z^a

Superpotential:
$$W = e_i T^i + \epsilon_a Z^a + \frac{i}{2} \tilde{d}_{abc} \mu^a Z^b Z^c$$

- $h^{1,1} + h^{2,1} 1$ axionic flat directions
- x = 1/4 remains true
- still difficult to achieve ${\rm Re}(T)>1$ and ${\rm Re}(Z)>1$

General case

Arbitrary number of moduli: S, T^i , Z^a Superpotential: $\mathcal{W} = e_i T^i + \epsilon_a Z^a + \frac{i}{2} \tilde{d}_{abc} \mu^a Z^b Z^c$

- $h^{1,1} + h^{2,1} 1$ axionic flat directions
- x = 1/4 remains true
- still difficult to achieve ${\rm Re}(T)>1$ and ${\rm Re}(Z)>1$
- → difficult to find consistent, supersymmetric vacua for half-flat mirror manifolds.

Magnetic torsion?

Assume
$$\mathcal{W}=eT+rac{im}{2}T^2+\epsilon Z+rac{i\mu}{2}Z^2$$

Magnetic torsion?

Assume
$$\mathcal{W}=eT+rac{im}{2}T^2+\epsilon Z+rac{i\mu}{2}Z^2$$

- all moduli fixed
- $x \in [0, 1]$, so weak coupling possible, but $Re(S) \simeq 24$ difficult
- still difficult to achieve $\mathrm{Re}(T)>1$ and $\mathrm{Re}(Z)>1$

Magnetic torsion?

Assume
$$\mathcal{W}=eT+\frac{im}{2}T^2+\epsilon Z+\frac{i\mu}{2}Z^2$$

For supersymmetric vacua:

- all moduli fixed
- $x \in [0, 1]$, so weak coupling possible, but $Re(S) \simeq 24$ difficult
- still difficult to achieve ${\rm Re}(T)>1$ and ${\rm Re}(Z)>1$

Main problem: No heterotic derivation of such a model known.

Generalized half-flat manifolds

Suggested by gauging of N=2 SUGRA Characterized by: (d'Auria et al., '04)

$$d\omega_{i} = p_{Ai}\beta^{A} - q_{i}^{A}\alpha_{A}$$

$$d\alpha_{A} = p_{Ai}\tilde{\omega}^{i}$$

$$d\beta^{A} = q_{i}^{A}\tilde{\omega}^{i}$$

$$d\tilde{\omega}^{i} = 0$$

where p_{Ai} and q_i^A are torsion parameters.

Generalized half-flat manifolds

Suggested by gauging of N=2 SUGRA Characterized by: (d'Auria et al., '04)

$$d\omega_{i} = p_{Ai}\beta^{A} - q_{i}^{A}\alpha_{A}$$

$$d\alpha_{A} = p_{Ai}\tilde{\omega}^{i}$$

$$d\beta^{A} = q_{i}^{A}\tilde{\omega}^{i}$$

$$d\tilde{\omega}^{i} = 0$$

where p_{Ai} and q_i^A are torsion parameters.

$$\mathcal{W} = (q_i^A \mathcal{G}_A - p_{Ai} Z^A) T^i + \epsilon_A Z^A - \mu^A \mathcal{G}_A$$

If dH = 0 (standard embedding) $\mu^A p_{Ai} - \epsilon_A q_i^A = 0$.

Solution method

Superpotential: $W = \mathcal{W}(T^i, Z^a) + ke^{-cS}$

Find global solution T_0^i , Z_0^a , so that $\partial_i W(T_0, Z_0) = \partial_a W(T_0, Z_0) = 0$.

Define $\mathcal{W}_0 = \mathcal{W}(T_0, Z_0)$ and require $|\mathcal{W}_0| \ll 1$.

Solution method

Superpotential: $W = \mathcal{W}(T^i, Z^a) + ke^{-cS}$

Find global solution T_0^i , Z_0^a , so that $\partial_i W(T_0, Z_0) = \partial_a W(T_0, Z_0) = 0$.

Define $W_0 = \mathcal{W}(T_0, Z_0)$ and require $|\mathcal{W}_0| \ll 1$.

Then a local solution exists nearby and

$$(2x+1)e^{-x} = \left| \frac{\mathcal{W}_0}{k} \right|$$

where x = c Re(S).

Simple STZ model

Kahler- and superpotential:

$$K = -\ln(S + \bar{S}) - 3\ln(T + \bar{T}) - 3\ln(Z + \bar{Z})$$

$$W = i(\xi + ieT) + (\epsilon + ipT)Z + \frac{i}{2}(\mu + iqT)Z^{2} + \frac{1}{6}(\rho + irT)Z^{3}$$

Standard embedding: $\xi r - \epsilon q + \mu p - \rho e = 0$

Simple STZ model

Kahler- and superpotential:

$$K = -\ln(S + \bar{S}) - 3\ln(T + \bar{T}) - 3\ln(Z + \bar{Z})$$

$$W = i(\xi + ieT) + (\epsilon + ipT)Z + \frac{i}{2}(\mu + iqT)Z^{2} + \frac{1}{6}(\rho + irT)Z^{3}$$

Standard embedding: $\xi r - \epsilon q + \mu p - \rho e = 0$

Find global solutions by numerical scan of (integer) flux/torsion parameters → local solutions and values of gauge coupling.

Simple STZ model

Kahler- and superpotential:

$$K = -\ln(S + \bar{S}) - 3\ln(T + \bar{T}) - 3\ln(Z + \bar{Z})$$

$$W = i(\xi + ieT) + (\epsilon + ipT)Z + \frac{i}{2}(\mu + iqT)Z^{2} + \frac{1}{6}(\rho + irT)Z^{3}$$

Standard embedding: $\xi r - \epsilon q + \mu p - \rho e = 0$

Find global solutions by numerical scan of (integer) flux/torsion parameters → local solutions and values of gauge coupling.

For standard embedding: $|\mathcal{W}_0| > 0.8$ always.

Non-standard embedding

Number of global solutions as a function of $|\mathcal{W}_0|$ for parameters in range -70...70.

Non-standard embedding, cont'd

Let N(M, w) be the number of solutions for parameters in the range $-M \dots M$ and $|\mathcal{W}_0| < w$.

We find : $N(M,w) \simeq M^5 w^2$

 \rightarrow roughly 10^{-3} of vacua lead to a weak gauge coupling ${\rm Re}(S) \simeq 24$.

Conclusion and outlook

- The "missing" RR flux in the heterotic string can be "replaced" by torsion of the internal space.
- It is difficult to obtain consistent vacua for half-flat mirror spaces and for more general spaces with standard embedding.
- Generalized half-flat spaces with non-standard embedding allow for a large number of consistent vacua.
- Gauge couplings weak enough for unification are obtained for a small fraction (e. g. 1/1000) of these vacua.

Conclusion and outlook, cont'd

- The cosmological constant can probably be lifted to positive values by adding anti 5-branes.
- A number of theoretical issues need better understanding: construction of spaces, gauge field sector, quantization,...
- Analyze potentials away from vacua: cosmology, inflation?