

Calculating the primordial non-gaussianity

David H. Lyth

Particle theory and cosmology group

Physics Department

Lancaster University

Overview

- 1. Non-gaussianity as a discriminator.
- 2. Defining the primordial curvature perturbation ζ .
- 3. Defining the non-gaussianity of ζ .
- 4. The magic formula for ζ .
- 4. The three main scenarios.

Non-gaussianity as a discriminator

Model \Rightarrow Primordial Perturbation \Rightarrow Observables

Primordial perturbation is:

- Mostly adiabatic
 - How much isocurvature?
 - How much tensor?
 - How much cosmic string, wall, texture?
- Almost scale-independent
 - How much tilt?
- Almost gaussian
 - How much non-gaussianity?
 - What kind (bispectrum, trispectum).
 - How can we compute the non-gaussianity?

My main messages

To particle theorists

- I will show you how to calculate the primordial non-gaussianity.
- Cf. spectral tilt: $n-1=2\eta-6\epsilon$ (Liddle/DHL 1992)

To astronomers

- Trispectrum, even higher correlators, could be as important as the bispectrum.
- I will give you the dependence of each correlator on the wave-vectors.

Defining the curvature perturbation ζ

- 1. Smooth the Universe on the scale 10^{-2} Mpc.
- 2. Consider $t < 100 \, \text{s}$ (before horizon entry \equiv 'primordial')
- 3. Work on slicing of uniform energy density ρ
- 4. Define local scale factor: $g_{ij} = \tilde{a}^2(\mathbf{x}, t)\delta_{ij}$
- 5. Define $\zeta \equiv \ln \tilde{a}(\mathbf{x},t) \ln a(\mathbf{x},t) \equiv \delta N$
 - In words, ζ is the perturbation in the number of e-folds of expansion, starting from a *flat* slice.
 - ζ is conserved iff pressure $P(\rho)$ is a unique function.
 - Its constant value at $t\sim 10\,\mathrm{s}$ provides the initial condition for adiabatic perturbations.

The correlators

Spectrum \mathcal{P} , bispectrum[†] f_{NL} , trispectrum^{††} τ_{NL} :

$$\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k'}} \rangle = (2\pi)^3 \delta(\mathbf{k} + \mathbf{k'}) K_1 \mathcal{P}$$
 (1)

$$-\frac{3}{5}\langle \zeta_{\mathbf{k}}\zeta_{\mathbf{k'}}\zeta_{\mathbf{k''}}\rangle = (2\pi)^3\delta(\mathbf{k} + \mathbf{k'} + \mathbf{k''})K_2\mathcal{P}^2 f_{\mathrm{NL}}$$
 (2)

$$\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k''}} \zeta_{\mathbf{k'''}} \rangle_{c} = (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k'} + \mathbf{k''} + \mathbf{k'''}) K_{3} \mathcal{P}^{3} \tau_{NL}$$
 (3)

where the kinematic factors depend on the wave-vectors:

$$K_1 \equiv 2\pi^2/k^3 \tag{4}$$

$$K_2 \equiv K_1(k)K_1(k') + 5 \text{perms}$$
 (5)

$$K_3 \equiv K_2 K_1(|\mathbf{k} + \mathbf{k''}|) + 23 \text{perms}$$
 (6)

† Komatsu/Spergel 2000; Maldacena 2003

T Boubekeur/DHL 2005

Theory and Observation

SLOW-ROLL INFLATION PREDICTION:

 \mathcal{P} , f_{NL} and au_{NL} almost scale-independent.

OBSERVATION:

- 1. $\mathcal{P} = (5 \times 10^{-5})^2$ (WMAP+SDSS)
- $|f_{
 m NL}| \lesssim 100 \ll \mathcal{P}^{-1/2}$ (WMAP)
- $\overline{\mathbf{3.} \ | au_{\mathrm{NL}}| \lesssim 10^8 \ll \mathcal{P}^{-1}}$ (COBE !!!!)
 - From 2 and 3, ζ is almost gaussian.
 - Observation eventually will give (absent detection)
 - $|f_{\rm NL}| \lesssim 1$ and $| au_{\rm NL}| \lesssim ??????$

† DHL/Rodriguez 2005

Magic formula 1 for ζ^{\dagger}

$$\zeta(\mathbf{x},t) = \delta N \tag{7}$$

Here $N(\phi_i(\mathbf{x}), \rho(t))$ is number of e-folds of expansion starting from a flat slice just after horizon exit (field values $\phi_i(\mathbf{x})$) and ending on a uniform-density slice at time t. We're interested in $t \sim 10\,\mathrm{s}$.

- The magic formula gives ζ knowing evolution of a family of unperturbed local universes (separate universe picture^{††})
- It's not cosmological perturbation theory!
- † Sasaki/Stewart 1995, DHL/Malik/Sasaki 2005
- †† Liddle/Malik/DHL/Wands 1999

Magic formula 2 for ζ^{\dagger}

$$\zeta(\mathbf{x},t) = \sum_{i} \frac{\partial N}{\partial \phi_{i}} \delta \phi_{i}(\mathbf{x}) + \frac{1}{2} \sum_{ij} \frac{\partial^{2} N}{\partial \phi_{i} \partial \phi_{j}} \delta \phi_{i}(\mathbf{x}) \delta \phi_{j}(\mathbf{x})$$
(8)

- The $\delta\phi_i$ have spectrum $(H/2\pi)^2$ and are practically gaussian^{††}
- Magic formula gives $\mathcal{P} = (H/2\pi)^2 \sum N_i^2$, and determines non-gaussianity if it's significant.

NOTE: We discount exotic inflation models (D-celeration, ghost inflation) giving non-gaussian inflaton perturbation $\delta \phi$.

† Sasaki/Stewart 1995; DHL/Rodriguez 2005

†† Seery/Lidsey 2005, DHL/Zaballa 2005

Scenario 1: The inflaton ϕ generates ζ

The standard scenario

$$\zeta \simeq N_{\phi}\delta\phi.$$
 (9)

- Spectrum $^{\dagger}\mathcal{P}\simeq(H^2/2\pi\dot{\phi})^2$
- Tilt $^{\dagger\dagger}n 1 = 2\eta 6\epsilon$
- Negligible non-gaussianity^{†††}.

†Starobinsky 1982, etc.

††Liddle/DHL 1992

†††Seery/Lidsey 2005, see also Maldacena 2003

Scenario 2: Curvaton $^{\dagger}\sigma$ generates ζ

Not exotic^{††}; many 'curvaton' candidates.

$$\zeta = N_{\sigma}\delta\sigma + \frac{1}{2}N_{\sigma\sigma}(\delta\sigma)^2 \equiv \zeta_{\rm g} - \frac{5}{3}f_{\rm NL}\zeta_{\rm g}^2 \tag{10}$$

Prediction^{†††}:

$$\mathcal{P} = \frac{H_* r g'}{3\pi g} \tag{11}$$

$$-(3/5)f_{\rm NL} = -1 - \frac{1}{2}r + \frac{3}{4}\frac{1}{r}\left(1 + \frac{gg''}{g'}\right) \tag{12}$$

$$\tau_{\rm NL} = 4(3f_{\rm NL}/5)^2$$
 (13)

† DHL/Wands 2002; Moroi/Takahashi 2002; Enqvist/Sloth 2002

†† Discovered unknowingly; Hamaguchi/Murayama/Yanagida, 2001

††† DHL/Wands 2002; Okamoto/Hu 2002; Bartolo/Matarrese/Riotto 2004; DHL/Rodriguez 2005

Scenario 3: mixture of 1 and 2

Mainly inflaton with some curvaton. *Not exotic* eg. GUT inflation with σ a string axion.

$$\zeta = N_{\phi}\delta\phi + \frac{1}{2}N_{\sigma\sigma}(\delta\sigma)^2 \equiv \zeta_{\phi} + \zeta_{\sigma}$$
 (14)

predictions[†]: $f_{\rm NL} \sim 10^4 (\zeta_{\sigma}/\zeta_{\phi})^3$ and $\tau_{\rm NL} \sim 10^{10} (\zeta_{\sigma}/\zeta_{\phi})^4$.

APPLICATION: two-component inflation

$$V = V_0 + \frac{1}{2}m_{\phi}^2\phi^2 + \frac{1}{2}m_{\sigma}^2\sigma^2$$
, (unperturbed $\sigma = 0$) (15)

Magic formula^{††}for $\langle B^2/A \rangle$ agrees with one 2nd-order cos. pert. calculation^{†††}, disagrees with another^{†††}, but anyhow negligible.

† DHL/Boubekeur 2005 †† DHL/Rodriguez 2005 ††† Malik 2005

†††† Enqvist/Vaihkonen 2004 from Acqaviva et. al. 2003

Final thoughts

- 1. We at last have a *complete* and *simple* understanding of primordial non-gaussianity.
- 2. Non-gaussianity may discriminate between models more strongly than spectral tilt, tensor, correlated or un-correlated isocurvature, cosmic string signals etc.
- 3. Most scenarios predict that at least one of the above will be observed. So we will learn a lot even if none of them are observed!