Constraints in codimension-2 brane cosmology

Antonios Papazoglou

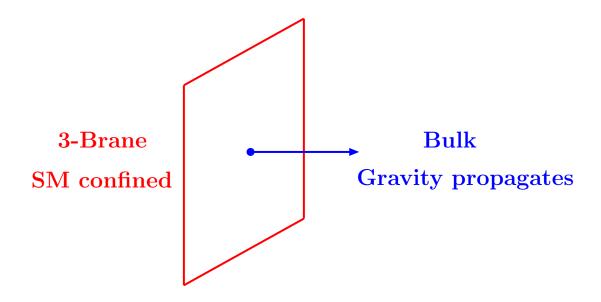
Lausanne, École Polytechnique

Outline

- Codimension-2 branes in 6D and cosmology
- Addition of induced gravity / Gauss-Bonnet term
- Bulk-brane constraints and relaxation of them

On hep-th/0501112 and hep-th/0507278 by E. Papantonopoulos and A.P.

Brane worlds - 5D



- Arena to explore long standing problems in physics under new perspective
 - Electroweak hierarchy problem
 - Cosmological constant problem
- Most thoroughly studied in 5D One dim. \bot to the brane \equiv Codimension-1 brane
- Einstein equation projected on the brane

$$E_{\mu\nu}^{(4)} = \frac{1}{M_{Pl}^2} T_{\mu\nu}^{(br)} + \{ T_{(br)}^2 \}_{\mu\nu} + \{ C \}_{\mu\nu} + \Lambda_4 g_{\mu\nu}$$

obtained by the junction condition $K_{\mu\nu} \equiv g'_{\mu\nu} \sim T^{(br)}_{\mu\nu}$

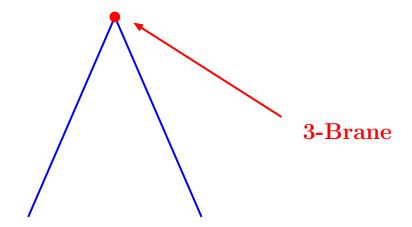
• Example of cosmology on the brane

$$\frac{\dot{a}^2}{a^2} + \frac{k}{a^2} = \frac{1}{3M_{Pl}^2} \left[\rho + \frac{\rho^2}{2T} + \frac{C}{a^4} \right]$$

Early time cosmology (for $\rho \gg T \sim M_{Pl}^4$) is 5D

• More exotic late time modifications also possible

Brane worlds - 6D



- Less understood are 6D brane worlds

 Two dim. \bot to the brane \equiv Codimension-2 brane
- Codimension-2 branes have an interesting property
 - General action of a brane model

$$S = \int R^{(reg)} + R^{(sing)} + \mathcal{L}^{(bulk)} - T^{(br)}$$

- In general $R^{(sing)} \propto T^{(br)}$
- Only for codimension-2 branes $R^{(sing)} = T^{(br)}$
- Exact automatic cancellation $R^{(sing)}$ and $T^{(br)}$
- This happens because in 2 dimensions, sources do not curve the space, but only introduce a deficit angle
- Promising for realizing a self tuning scenario
 - *i.e.* a situation where the 4D geometry is Minkowskian for any brane vacuum energy without any fine tuning of it with other parameters of the action

[S.M.Carroll, M.M.Guica, hep-th/0302067] [I.Navarro, hep-th/0302129] [S.Radjbar-Daemi, V.Rubakov, hep-th/0407176] [H.M.Lee, A.P., hep-th/0407208]

Problem with cosmology

[J.M.Cline, J.Descheneau, M.Giovannini, J.Vinet, hep-th/0304147]

- 6D brane models assume $T_{\mu\nu} = -Tg_{\mu\nu}\delta^{(2)}(\vec{r})$
- For cosmology we need $T_{\mu\nu} = \operatorname{diag}(-\rho, P, P, P)\delta^{(2)}(\vec{r})$
- Metric ansatz

$$ds^{2} = -N^{2}(t, r)dt^{2} + A^{2}(t, r)d\vec{x}^{2} + dr^{2} + L^{2}(t, r)d\theta^{2}$$

• Equations of motion

$$3\frac{A''}{A} + \frac{L''}{L} + \dots = -\rho \ \delta^{(2)}(\vec{r}) \qquad (00)$$
$$2\frac{A''}{A} + \frac{N''}{N} + \frac{L''}{L} + \dots = P \ \delta^{(2)}(\vec{r}) \qquad (ij)$$

• For $L \sim \beta r + \mathcal{O}(r^2)$ we have

$$R_{00} \sim \frac{N'}{r} + \dots$$
 , $R_{ij} \sim \frac{A'}{r} \delta_{ij} + \dots$

- In general the geometry is singular at r=0
 - Either we should regularize the brane
 - Or assume that that the brane is purely conical
- To have model independence, we choose to have conical branes
 - \Rightarrow No $\frac{1}{r}$ singularities force A' = N' = 0 at r = 0
 - \Rightarrow No singular part in A'', N''
 - \Rightarrow Singular part comes only from L''
 - \Rightarrow Only tension allowed $\rho = -P$

Modifying the gravity action

[P.Bostock, R.Gregory, I.Navarro, J.Santiago, hep-th/0311074]

- Need to modify the singularity structure of the equations of motion
 - ⇒ Add a bulk Gauss-Bonnet term and a brane induced gravity term

$$S = \frac{M_6^4}{2} \int d^6x \sqrt{G} \left[R^{(6)} + \alpha (R^{(6)}^2 - 4R_{MN}^{(6)}^2 + R_{MNK\Lambda}^{(6)}^2) \right]$$
$$+ \frac{M_6^4}{2} r_c^2 \int d^6x \sqrt{g} R^{(4)} \frac{\delta(r)}{2\pi L} + \int d^6x \mathcal{L}_{Bulk} + \int d^6x \mathcal{L}_{brane} \frac{\delta(r)}{2\pi L}$$

• Metric ansatz

$$ds^2 = -g_{\mu\nu}(x,r)dx^\mu dx^\nu + dr^2 + L^2(x,r)d\theta^2$$
 with $L=\beta r + \mathcal{O}(r^2)$

• Singular terms

$$\frac{L''}{L} = -(1 - \beta)\frac{\delta(r)}{L} + \text{non - singular}$$

$$\frac{K'_{\mu\nu}}{L} = K_{\mu\nu}\frac{\delta(r)}{L} + \text{non - singular}$$

- Since $R_{\mu\nu}^{(6)} = -\frac{K_{\mu\nu}}{r} + \mathcal{O}(1)$, we must have $K_{\mu\nu} = 0$ at r = 0
- The (μr) equation constrains β

$$\frac{\partial_{\mu}L'}{L} = -\frac{K_{\mu\nu}}{r} + \mathcal{O}(1) \qquad \Rightarrow \qquad \beta = \text{constant}$$

• Then the δ -function part of the Einstein equations gives

$$G_{\mu\nu}^{(4)} = \frac{1}{M_{Pl}^2} \left[T_{\mu\nu}^{(br)} - \Lambda_4 g_{\mu\nu} \right]$$

with
$$M_{Pl}^2 = [8\pi(1-\beta)\alpha + r_c^2]M_6^4$$
 and $\Lambda_4 = -2\pi(1-\beta)M_6^4$

Bulk-brane matter relations

- The 6D Einstein equations include more information in addition to the δ -function part
- In particular, the (rr) equation evaluated at r = 0 gives

$$R^{(4)} + \alpha [R^{(4)} {}^{2} - 4R^{(4)}_{\mu\nu} {}^{2} + R^{(4)}_{\mu\nu\kappa\lambda}] = -\frac{2}{M_{6}^{2}} T_{r}^{(B)r}$$

- We know $R^{(4)}$ and $R^{(4)}_{\mu\nu}$ from the brane Einstein equation, but $R^{(4)}_{\mu\nu\kappa\lambda}$ is in general arbitrary
- For $\alpha = 0$, *i.e.* only brane induced gravity

$$T_r^{(B)r} = -\frac{M_6^4}{2}R^{(4)} = \frac{1}{2r_c^2}[T_\mu^{(br)\mu} + 8\pi M_6^4(1-\beta)]$$

Brane matter is tuned to bulk matter

- For $\alpha \neq 0$, it depends on the symmetry of the space
- If we assume isotropic metric, e.q.

$$ds^{2} = -N^{2}(t, r)dt^{2} + A^{2}(t, r)d\vec{x}^{2} + dr^{2} + L^{2}(t, r)^{2}d\theta^{2}$$

then $R_{\mu\nu\kappa\lambda}^{(4)}$ is related to $R^{(4)}$ and $R_{\mu\nu}^{(4)}$

• For an isotropic metric we have always a tuning

$$T_r^{(B)r} = f(T_\nu^{(br)\mu})$$

- Different from the 5D brane cosmology In 5D $K_{\mu\nu} \neq 0$ on the brane
 - ⇒ Independence of brane matter from bulk matter

The constrained isotropic case

- Let us assume the following
 - the brane vacuum energy cancels Λ_4

$$\rho = -\Lambda_4 + \rho_m \quad , \quad P = \Lambda_4 + w\rho_m$$

- the bulk has only cosmological constant

$$T_{MN}^{(B)} = -\Lambda_B G_{MN}$$

• The brane Einstein equations give

$$\frac{\dot{a}^2}{a^2} = \frac{\rho_m}{3M_{Pl}^2} \quad , \quad \frac{\ddot{a}}{a} = -(3w+1)\frac{\rho_m}{6M_{Pl}^2}$$

• The brane matter tuning is

$$-\frac{\Lambda_B}{M_6^4} = \frac{\rho_m}{M_{Pl}^2} \left[\frac{1}{2} (3w - 1) + \frac{2}{3} (3w + 1) \alpha \frac{\rho_m}{M_{Pl}^2} \right]$$

ullet Note that w cannot be constant but evolves as

$$\dot{w} + 3(1+w)\rho_m \frac{\partial w}{\partial \rho_m} \frac{\dot{a}}{a} = 0$$

- The evolution of this constrained system depends on Λ_B
 - For $\Lambda_B = 0$, there is an attractor with $(\rho_m, w) = (0, 1/3)$
 - For $\Lambda_B > 0$, there is an attractor with $(\rho_m, w) = (\rho_f, -1)$ with $\frac{\alpha \rho_f}{M_{Pl}^2} = -\frac{3}{4} + \frac{3}{4} \sqrt{1 + \frac{4}{3} \frac{\alpha \Lambda_B}{M_6^4}} > 0$
 - For $\Lambda_B < 0$, the system runs away to $w \to \infty$
- Potentially interesting evolution for $0 < \alpha \Lambda_B/M_6^4 \ll 1$ with

$$w_{ini} \sim 1/3 \quad \Rightarrow \quad w \sim 0 \quad \Rightarrow \quad w_{fin} \sim -1$$

The unconstrained anisotropic case

- Let us see if we can avoid the above tuning of ρ and w by adding anisotropy to the geometry
- Consider the simple case where

$$ds^{2} = -N^{2}(t, r)dt^{2} + \sum_{i} A_{i}^{2}(t, r)(dx^{i})^{2} + dr^{2} + L^{2}(t, r)d\theta^{2}$$

and with a particular anisotropy

$$A_1(t,r) = a(t)b(t) + \xi_1(t)r^2 + \dots$$

$$A_2(t,r) = \frac{a(t)}{b(t)} + \xi_2(t)r^2 + \dots$$

$$A_3(t,r) = a(t) + \xi_3(t)r^2 + \dots$$

- We keep the brane fluid isotropic
- The brane Einstein equations give

$$\frac{\dot{a}^2}{a^2} - \frac{1}{3} \cdot \frac{\dot{b}^2}{b^2} = \frac{\rho_m}{3M_{Pl}^2} \quad , \quad \frac{\ddot{a}}{a} + \frac{2}{3} \cdot \frac{\dot{b}^2}{b^2} = -(3w+1)\frac{\rho_m}{6M_{Pl}^2}$$
$$\frac{\ddot{b}}{b} - \frac{\dot{b}^2}{b^2} + 3\frac{\dot{a}\dot{b}}{ab} = 0$$

ullet The (rr) equation gives a "Hubble" equation for b

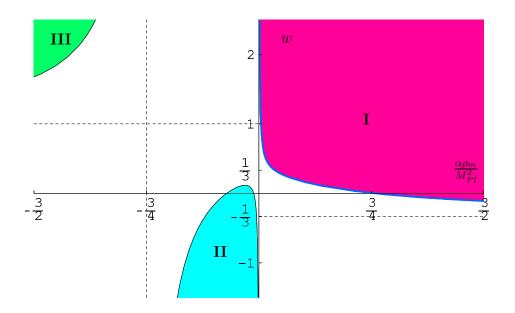
$$\frac{\dot{b}^2}{b^2} = -\frac{\rho_m}{4M_{Pl}^2} + \sqrt{\frac{3}{32\alpha}} \sqrt{2\frac{\Lambda_B}{M_6^4} + \frac{\rho_m}{M_{Pl}^2} \left[(3w - 1) + 2(2w + 1)\alpha \frac{\rho_m}{M_{Pl}^2} \right]} \equiv f(\rho_m, w)$$

• Again w cannot be constant but evolves as

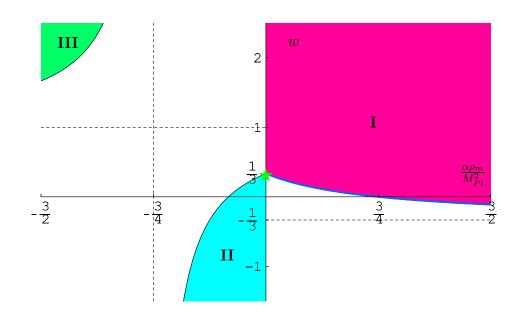
$$\frac{\partial f}{\partial w}\dot{w} + 3\left[2f - (1+w)\rho_m \frac{\partial f}{\partial \rho_m}\right] \frac{\dot{a}}{a} = 0$$

Parameter spaces

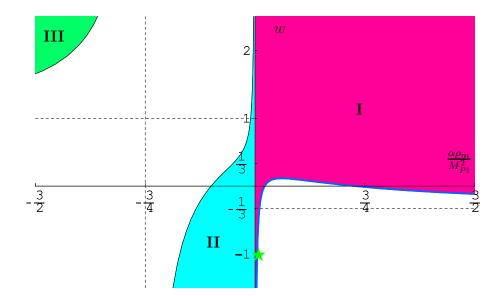
- In order that the Hubbles H_a , H_b are not imaginary, there are only certain allowed regions in the (ρ_m, w) plane
- To be compared with the line of isotropic tuning (—)
- The fixed points are in the allowed region (★)
- For $\Lambda_B < 0$



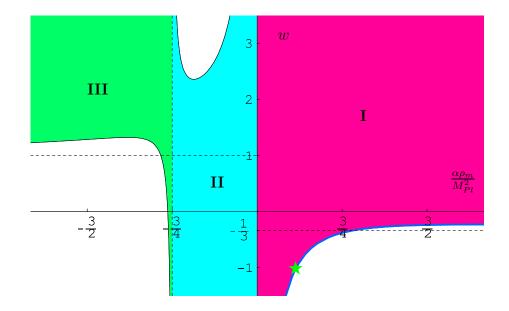
• For $\Lambda_B = 0$



• For $0 < \frac{\Lambda_B}{M_6^4} < \frac{3}{4}$



• For $\frac{\Lambda_B}{M_6^4} > \frac{3}{4}$



• Although Regions I, II, III may be connected, the evolutions never cross the $r_m=0$ and $\frac{\alpha\rho_m}{M_{Pl}^2}=-\frac{3}{4}$ lines

Cosmological evolutions

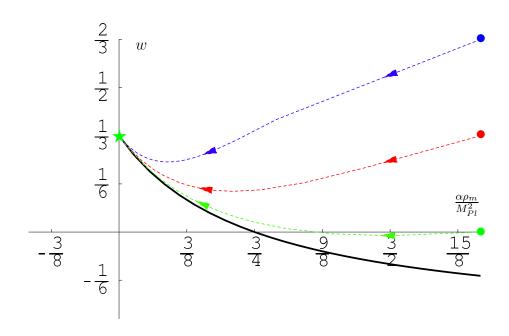
- There are no new attractor fixed points in the (w, ρ_m) plane apart from the ones on the lines of isotropic tuning
- In Region I, the solutions for $\Lambda_B \geq 0$ evolve towards the fixed points

$$\Rightarrow (\rho_m, w) = (0, 1/3) \text{ if } \Lambda_B = 0$$

$$\Rightarrow (\rho_m, w) = (\rho_f, -1) \text{ if } \Lambda_B > 0$$

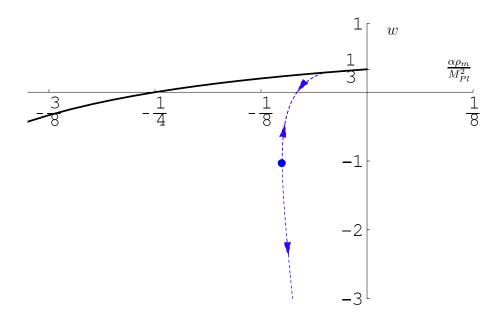
$$\left[\frac{\alpha \rho_f}{M_{Pl}^2} = -\frac{3}{4} + \frac{3}{4}\sqrt{1 + \frac{4}{3}\frac{\alpha \Lambda_B}{M_6^4}} > 0\right]$$

• Example for $\Lambda_B = 0$

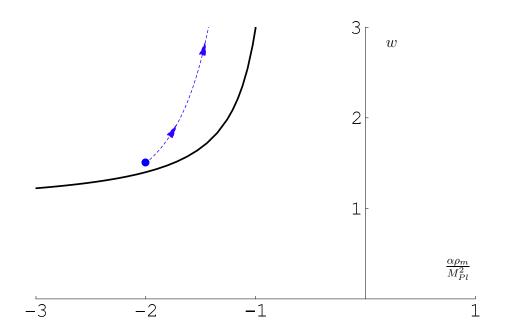


- The line of isotropic tuning is a very weak attractor for the interesting cases where $0 < \alpha \Lambda_B/M_6^4 \ll 1$
- In Region I, the solutions for $\Lambda_B < 0$ have a runaway behaviour with $w \to +\infty$ and $\rho_m \to 0^+$

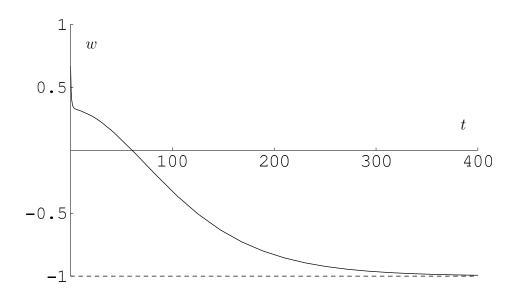
- In Region II the solutions for any Λ_B have a runaway with $w \to \pm \infty$ and $\rho_m \to 0^-$
- Example for $\Lambda_B = 0$

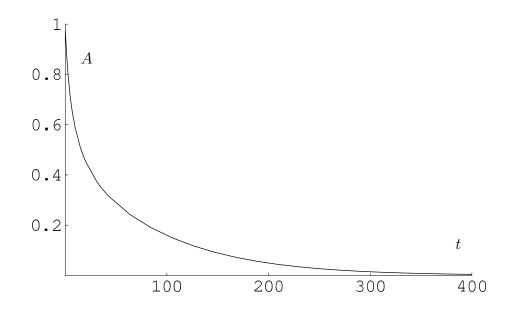


- In Region III the solutions for any Λ_B have a runaway with $w \to +\infty$ and $\frac{\alpha \rho_m}{M_{Pl}^4} \to -\frac{3}{4}$
- Example for $\Lambda_B = 0$



- Since the lines of isotropic tuning are very weak attractors (for $0 < \alpha \Lambda_B/M_6^4 \ll 1$), most of the evolution is significantly anisotropic, unless the initial conditions are fine tuned
- Example for $0 < \alpha \Lambda_B/M_6^4 \ll 1$





with
$$A = \sqrt{\sum_{i=1}^{3} \frac{(\langle H \rangle - H_i)^2}{3\langle H \rangle^2}} = \sqrt{\frac{2}{3}} \left| \frac{a\dot{b}}{\dot{a}b} \right|$$

Conclusions

- 6D models with codimension-2 branes interesting because of their potential self tuning property
- General problem with cosmology
 - either singularities
 - or only tension on the brane
- Including an induced gravity and/or a Gauss-Bonnet term we can get a 4D Einstein equation on the brane
- Extra dimensional components of the equation of motion impose a bulk-brane matter tuning
 - in the induced gravity case
 - in the Gauss-Bonnet case with isotropic evolution
- There exist fixed points (attractors) for these evolutions
 - w = 1/3 if $\Lambda_B = 0$
 - w = -1 if $\Lambda_B > 0$
- In an anisotropic evolution (in the Gauss-Bonnet case) the extra dimensional constraint provides an evolution equation for the anisotropy
- Vast regions of parameter space available for cosmology
- We have the same fixed points (attractors) as before, but the lines of isotropic tuning are only weak attractors