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Outline
e Codimension-2 branes in 6D and cosmology
e Addition of induced gravity / Gauss-Bonnet term

e Bulk-brane constraints and relaxation of them

On hep-th/0501112 and hep-th/0507278
by E. Papantonopoulos and A.P.



Brane worlds - 5D

Bulk
Gravity propagates

3-Brane

SM confined

/
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e Arena to explore long standing problems in physics under
new perspective

- Electroweak hierarchy problem

- Cosmological constant problem

e Most thoroughly studied in 5D

One dim. 1 to the brane = Codimension-1 brane

e Einstein equation projected on the brane
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obtained by the junction condition K, = gl’w ~ T,El,ir)
e Example of cosmology on the brane
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Early time cosmology (for p > T ~ M3, is 5D

e More exotic late time modifications also possible



Brane worlds - 6D

3-Brane

® Less understood are 6D brane worlds

Two dim. 1 to the brane = Codimension-2 brane

e Codimension-2 branes have an interesting property

- General action of a brane model

S = /R(reg) + R(Sing) + £(bulk:) o T(b,,)

- In general R o T")
- Only for codimension-2 branes R"9) = 7(7)
- Exact automatic cancellation R and 7"
e This happens because in 2 dimensions, sources do not
curve the space, but only introduce a deficit angle
e Promising for realizing a self tuning scenario

i.e. a situation where the 4D geometry is Minkowskian
for any brane vacuum energy without any fine tuning of
it with other parameters of the action

[S.M.Carroll, M.M.Guica, hep-th /0302067
[I.Navarro, hep-th/0302129
[S.Radjbar-Daemi,V.Rubakov, hep-th /0407176
[HM.Lee,A.P., hep-th /0407208



Problem with cosmology

[J.M.Cline,J.Descheneau,M.Giovannini,J.Vinet, hep-th/0304147]

e 6D brane models assume T}, = —7g,,, 0 (7)
e For cosmology we need T}, = diag(—p, I, I°, ")d(7)

e Metric ansatz
ds* = —N?*(t,r)dt* + A*(t,r)dz* + dr* + L*(t,r)db?

e Equations of motion
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e For L ~ Br + O(r?) we have
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e In general the geometry is singular at »r =0
- Either we should regularize the brane
- Or assume that that the brane is purely conical
e To have model independence, we choose to have conical
branes
= No % singularities force A= N'=0at r =0
= No singular part in A”, N”
— Singular part comes only from L”

= Only tension allowed p = —



Modifying the gravity action
[P.Bostock,R.Gregory,I.Navarro,J.Santiago, hep-th /0311074]

e Need to modify the singularity structure of the equations
of motion

= Add a bulk Gauss-Bonnet term
and a brane induced gravity term
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e Metric ansatz
ds* = — g, (z,r)dxdx” + dr* + L*(z,r)do”
with L = r + O(r?)
e Singular terms

L’ o(r)

= —(1 — B)——= + non — singular
L L
K, o(r)
[’j = K T + non — singular
e Since joy) = —@ + O(1), we must have K, =0 at r =0

e The (ur) equation constrains (3

oL K,
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e Then the )-function part of the Einstein equations gives
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with M2 = [87(1 — B)a + r?]My and Ay = —27(1 — 3) M



Bulk-brane matter relations

e The 6D Einstein equations include more information in
addition to the J-function part

e In particular, the (rr) equation evaluated at r = 0 gives

2
RW 4+ a[RW 2 — 4R 2+ RY 3 = —WT;BV

e We know R and RfflV) from the brane Einstein equation,

but R/(fy)ﬁ , 1s in general arbitrary

e For a = 0, 7.e. only brane induced gravity
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Brane matter is tuned to bulk matter
e For o # 0, it depends on the symmetry of the space

e If we assume isotropic metric, e.g.
ds* = —N*(t,r)dt* + A*(t,r)dz* + dr* + L*(t, r)*db*

then Rfﬁm is related to R and RfflV)

e For an isotropic metric we have always a tuning

T(B)T _ f(T(bT’)/L)
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e Different from the 5D brane cosmology

In 5D K,, # 0 on the brane
= Independence of brane matter from bulk matter



The constrained isotropic case

e Let us assume the following

- the brane vacuum energy cancels A,
P:—A4—|—pm , P:A4—|—wpm
- the bulk has only cosmological constant
TP} = —ApGuy

e The brane Einstein equations give
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e The brane matter tuning is
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e The evolution of this constrained system depends on Ap
- For Ap =0, there is an attractor with (p,,, w) = (0,1/3)

- For Ap > 0, there is an attractor with (p,,,w) = (py, —1)

. A
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- For Ap < 0, the system runs away to w — oo

e Potentially interesting evolution for 0 < aAp/M{ < 1 with



The unconstrained anisotropic case

e Let us see if we can avoid the above tuning of p and w by
adding anisotropy to the geometry

e Consider the simple case where

ds* = —N*(t,r)dt* + Z A2(t,7)(da")? + dr® + L*(t,r)do*

and with a particular anisotropy

Ai(t,r) = a(t)b(t) + & (E)r* + ...
Ay(t,r) = % + &+

As(t,r) = a(t) + &(t)r* + . ..

e We keep the brane fluid isotropic

e The brane Einstein equations give
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e The (rr) equation gives a “Hubble” equation for b
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Parameter spaces

e In order that the Hubbles H,, H;, are not imaginary, there
are only certain allowed regions in the (p,,, w) plane

e To be compared with the line of isotropic tuning (—)
e The fixed points are in the allowed region ()

e For A\ <0
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e For A\p =10
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e Although Regions I, II, III may be connected, the evolu-

tions never cross the ., =0 and %2 — —3 lines
" M3, 4



Cosmological evolutions

e There are no new attractor fixed points in the (w,p,,)
plane apart from the ones on the lines of isotropic tuning

e In Region I, the solutions for Az > 0 evolve towards the
fixed points

= (pm,w) =(0,1/3) if Ap =0
= (pm,w) = (py,—1) if Ap >0

e Example for Ap =0

2
3w ¢
1 -~
11
% e
_
l .
6 apm
728
3 3 3 9 3 15
B E] Z 3
1

e The line of isotropic tuning is a very weak attractor for
the interesting cases where 0 < aAp/M{ < 1

e In Region I, the solutions for A < 0 have a runaway
behaviour with w — +o00 and p,,, — 07"



e In Region II the solutions for any Ap have a runaway with
w — +oo and p,, — 0~

e Example for Ap =0
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e In Region III the solutions for any Az have a runaway
with w — 400 and <& — —

e Example for Ap =0




e Since the lines of isotropic tuning are very weak attractors
(for 0 < aAp/M} < 1), most of the evolution is significantly
anisotropic, unless the initial conditions are

e Example for 0 < aAp/M; < 1
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Conclusions

e 6D models with codimension-2 branes interesting because
of their potential self tuning property

e General problem with cosmology
- either singularities

- Oor

e Including an induced gravity and /or a Gauss-Bonnet term
we can get a 4D Einstein equation on the brane

e Extra dimensional components of the equation of motion
impose a bulk-brane matter tuning

- in the induced gravity case

- in the Gauss-Bonnet case with isotropic evolution

e There exist fixed points (attractors) for these evolutions
~w=1/3if A\p=0
-w=-1if Ag >0

e In an anisotropic evolution (in the Gauss-Bonnet case)
the extra dimensional constraint provides an evolution
equation for the anisotropy

e Vast regions of parameter space available for cosmology

e We have the same fixed points (attractors) as before,
but the lines of isotropic tuning are only weak attractors



