The Cosmology of the Nonsymmetric Theory of Gravitation (NGT)

By Tomislav Prokopec

Based on astro-ph/0503289 and on unpublished work with Wessel Valkenburg (master's student)

Bonn, 28 Aug 2005

Introduction: Historical remarks

• NGT: metric tensor is not symmetric

$$\overline{g}_{\mu\nu} = g_{\mu\nu} + B_{\mu\nu}$$

$$\implies g_{\mu\nu} = \overline{g}_{(\mu\nu)}, \qquad B_{\mu\nu} = \overline{g}_{[\mu\nu]} = \frac{1}{2} \left(\overline{g}_{\mu\nu} - \overline{g}_{\nu\mu} \right)$$

In 1925 Einstein proposed it as a unified theory of gravity and electromagnetism

It does not work since

(a) Geodesic equation does not reproduce Lorentz force(b) Equations of motion do not impose divergenceless magnetic field

In 1979 Moffat proposed it as a generalised theory of gravitation: Nosymmetric Theory of Gravitation (NGT)

Advantages of NGT

- Unlike Einstein's Theory of General Relativity, contains no singularities? Moffat

° 2'

Introduction: Absence of singularities

° 3°

- E.g. most general static spherically symmetric solution $ds^{2} = \left(1 - \frac{2m}{r}\right) \left(1 - \frac{l^{4}}{r^{4}}\right) dt^{2} - \left(1 - \frac{2m}{r}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}$
- From geodesic equation: when l > 2m a test particle motion stops at r=l > 2m before it reaches event horizon
- Problems with Nosymmetric Theory of Gravitation (NGT)
 (a) When quantised, in its simplest disguise, NGT contains ghosts
 (b) There is instability (growing mode) even in Minkowski background
- Fix: make the nonsymmetric field massive
 - → That way one gets rid of ghosts and unstable mode

Introduction: Modified Newton Law

 Moffat (2004) has proposed that NGT can explain the flat rotation curves of galaxies without invoking dark matter

$$a = -\frac{G_0 M}{r^2} \left\{ 1 + \sqrt{\frac{M_0}{M}} \left[1 - \exp\left(-\frac{r}{r_0}\right) \left(1 + \frac{r}{r_0}\right) \right] \right\}$$

such that at short distances

$$\implies$$
 $a = -\frac{G_0 M}{r^2}$ (r << r₀)

and at large distances

$$\implies a = -\frac{G_{\infty}M}{r^2}, \quad G_{\infty} = G_0 \left(1 + \sqrt{\frac{M_0}{M}}\right) \quad (r >> r_0)$$

➡ Moffat takes r₀ ≈ 14 kpc, M₀ ≈ 10¹² M_{Sun} to explain flat rotation curves
 ➡ To explain light lensing in clusters, Moffat takes a different M₀ ≈ 10¹⁵ M_{Sun}

Also: Pioneer 10 & 11 acceleration anomaly (Moffat 2004)

Introduction: Galaxy rotation curves

Fits to the rotation curves for the galaxies: NGC1560, NGC 2903, NGC 4565 and NGC 5055 (Moffat 2004) NGC 2903

° 5°

NGT Action

In the weak B-field limit, the NGT action can be written as

$$S = S_{HE} + S_{NGT} + S_{matter}$$

- The Hilbert-Einstein action $S_{HE} = -\int d^4x \sqrt{-g} \frac{1}{16\pi G_N} (R + 2\Lambda)$
- The action of the Nonsymmetric Theory of Gravitation (to 2nd order) $S_{NGT} = \int d^{4}x \sqrt{-g} \left(\frac{1}{12} g^{\mu\alpha} g^{\nu\beta} g^{\rho\gamma} H_{\mu\nu\rho} H_{\alpha\beta\gamma} - \frac{1}{4} m_{B}^{2} g^{\mu\alpha} g^{\nu\beta} B_{\mu\nu} B_{\alpha\overline{\beta}} c R_{\mu\nu} B^{\mu\alpha} B_{\alpha}^{\nu} - c' R_{\mu\nu\alpha\beta} B^{\mu\alpha} B^{\nu\beta} + .. \right)$ • Field strength $H_{\mu\nu\rho} = \partial_{\mu} B_{\nu\rho} + \partial_{\nu} B_{\rho\mu} + \partial_{\rho} B_{\mu\nu}$
- mass is added for stability (Kunstater et al 1984; Damour, Deser, McCarthy 1993), but it also arises from a cosmological term Λ , since $\sqrt{-\overline{g}} = \sqrt{-g} \left(1 - \frac{1}{4}B^{\mu\alpha}B_{\mu\alpha} + ...\right)$

At linearised order, first term is gauge invariant, while the whole action may be diffeomorphism invariant (with the appropriate choice of constants c, c')

$$\mathsf{B}_{\mu\nu}\to\mathsf{B}_{\mu\nu}+\partial_{\mu}\Lambda_{\nu}-\partial_{\nu}\Lambda_{\mu}$$

Conformal space-times

The (symmetric part of) the metric tensor in a conformal space time is

$$g_{\mu\nu} = a^2 \eta_{\mu\nu}, \quad \eta_{\mu\nu} = diag(1, -1, -1, -1)$$

→ a = scale factor

The NGT action is then

$$S_{NGT} \rightarrow \int \! d^4 x \biggl(\frac{1}{12a^2} \eta^{\mu\alpha} \eta^{\nu\beta} \eta^{\rho\gamma} H_{\mu\nu\rho} H_{\alpha\beta\gamma} - \frac{1}{4} m_{\scriptscriptstyle B}^2 \eta^{\mu\alpha} \eta^{\nu\beta} B_{\mu\nu} B_{\alpha\beta} \biggr)$$

- → Note that in the limit a -> ∞ (late time inflation), the kinetic term drops out, and the field fluctuations can grow without a limit
- This is opposite of a scalar field action (kinetic term), for which fluctuations get frozen in

$$S_{_{scalar}} \rightarrow \int \! d^4 x \frac{1}{2} a^2 \eta^{\mu\alpha} \big(\partial_\mu \varphi \big) (\partial_\alpha \varphi)$$

Physical Modes

Consider the electric-magnetic decomposition of the Kalb-Ramond B-field

$$B_{\mu\nu} = \begin{vmatrix} 0 & E_{i} & E_{z} & E_{s} \\ -E_{i} & 0 & -B_{s} & B_{z} \\ -E_{z} & B_{s} & 0 & -B_{i} \\ -E_{z} & -B_{z} & B_{i} & 0 \end{vmatrix}$$
Ei = spin 1, parity -
Bi = spin 1, parity +
Bi =

• Physical DOFs (massive case): pseudovector \vec{B} (spin = 1, parity = +)

• Physical DOF (massless case): longitudinal magnetic field \vec{B}^{L}

Canonical quantisation

Impose canonical commutation relation on B-field and its canonical momentum

$$\begin{split} \hat{\vec{B}}^{L}(\vec{x},\eta) &= a(\eta) \int \frac{d^{3}k}{(2\pi)^{3}} e^{i\vec{k}.\vec{x}} \vec{\epsilon}^{L}(\vec{k}) \left[B_{\vec{k}}(\eta) \hat{b}_{\vec{k}} + B_{-\vec{k}}^{*}(\eta) \hat{b}_{-\vec{k}}^{\dagger} \right] \\ & \left[\hat{b}_{\vec{k}}, \hat{b}_{\vec{k}'}^{\dagger} \right] = (2\pi)^{3} \delta^{3}(\vec{k} - \vec{k}') \\ & \vec{k} \times \vec{\epsilon}^{L}(\vec{k}) = 0 \end{split}$$

Momentum space equation of motion for the modes

$$\left[\partial_{\eta}^{2} + \vec{k}^{2} + \frac{a''}{a} - 2\left(\frac{a'}{a}\right)^{2}\right]B_{\vec{k}}(\eta) = 0$$

NB: Contrary to a scalar field (which decays with the scale factor), the Kalb-Ramond B-field grows with the scale factor a

Vacuum fluctuations in de Sitter inflation^{° 10°}

In De Sitter inflation the scale factor is, $a = -\frac{1}{H_I \eta}$ ($\eta < -1/H_I$) such that $\frac{a''}{a} - 2\left(\frac{a'}{a}\right)^2 = 0$

mode equation of motion reduces to that of conformal vacuum

$$\left[\partial_{\eta}^{2}+\vec{k}^{2}\right]B_{\vec{k}}(\eta)=0$$

The conformal rescaling of the longitudinal B-mode

$$\vec{B}^{L}(\vec{x},\eta) \rightarrow \vec{B}^{L}_{c}(\vec{x},\eta) = \frac{\vec{B}^{L}(\vec{x},\eta)}{a}$$

The mode functions are those of conformal vacuum

$$\mathsf{B}_{\vec{k}}(\eta) = \frac{1}{\sqrt{2k}} e^{\pm ik\eta}$$

NB: In conformal vacuum there is very little particle production during inflation

Radiation era

In radiation era, $a = H_I \eta$ ($\eta > 1/H_I$) such that the mode equation

$$\left[\partial_{\eta}^{2}+\vec{k}^{2}-\frac{2}{\eta^{2}}\right]B_{\vec{k}}(\eta)=0$$

which is Bessel's equation of index 3/2. The solution is (Bunch-Davies)

$$B_{\vec{k}}(\eta) = \frac{1}{\sqrt{2k}} \left[\alpha_{\vec{k}} \left(1 - \frac{i}{k\eta} \right) e^{-ik\eta} + \beta_{\vec{k}} \left(1 + \frac{i}{k\eta} \right) e^{+ik\eta} \right]$$

with the "Wronskian" condition

$$| \alpha_{\vec{k}} |^2 - | \beta_{\vec{k}} |^2 = 1$$

The matching coefficients are

$$\alpha_{\vec{k}} = -\frac{1}{2} \frac{H_{I}^{2}}{k^{2}} \left(1 - 2i \frac{k}{H_{I}} - 2 \frac{k^{2}}{H_{I}^{2}} \right) e^{2ik/H_{I}}, \qquad \beta_{\vec{k}} = -\frac{1}{2} \frac{H_{I}^{2}}{k^{2}}$$

NB: For superhorizon modes at the end of inflation (a=1): $k \ll H_{I}$

°11°

Matter era

In matter era, $a = \frac{H_{I}}{4\eta_{eq}} (\eta + \eta_{eq})^2$ $(\eta > \eta_{eq})$ and the mode equation $\left[\partial_{\eta}^2 + \vec{k}^2 - \frac{6}{(\eta + \eta_{eq})^2} \right] B_{\vec{k}}(\eta) = 0$

which is Bessel's equation of index 5/2, whose solution is

$$B_{\bar{k}}(\eta) = \frac{1}{\sqrt{2k}} \left[\gamma_{\bar{k}} \left(1 - \frac{3i}{k\overline{\eta}} - \frac{3}{(k\overline{\eta})^2} \right) e^{-ik\overline{\eta}} + \delta_{\bar{k}} \left(1 + \frac{3i}{k\overline{\eta}} - \frac{3}{(k\overline{\eta})^2} \right) e^{+ik\overline{\eta}} \right], \qquad \overline{\eta} = \eta + \eta_{eq}$$

with the "Wronskian" condition

$$\mid\!\gamma_{\vec{k}}\mid^{2}-\mid\!\delta_{\vec{k}}\mid^{2}=\!1$$

and the matching coefficients

$$\begin{split} \gamma_{\bar{k}} e^{-2ik\eta_{eq}} &= \alpha_{\bar{k}} \left(1 + \frac{1}{2} \frac{i}{k\eta_{eq}} - \frac{1}{8} \frac{1}{(k\eta_{eq})^2} \right) e^{-ik\eta_{eq}} + \beta_{\bar{k}} \frac{1}{8} \frac{1}{(k\eta_{eq})^2} e^{+ik\eta_{eq}} \\ \delta_{\bar{k}} e^{+2ik\eta_{eq}} &= \alpha_{\bar{k}} \frac{1}{8} \frac{1}{(k\eta_{eq})^2} e^{-ik\eta_{eq}} + \beta_{\bar{k}} \left(1 - \frac{1}{2} \frac{i}{k\eta_{eq}} - \frac{1}{8} \frac{1}{(k\eta_{eq})^2} \right) e^{+ik\eta_{eq}} \end{split}$$

Spectrum of energy density

The stress energy tensor of a Kalb-Ramond field is standard,

$$T_{\mu\nu}^{NGT} = \frac{2}{\sqrt{-g}} \frac{\delta S_{NGT}}{\delta g_{\mu\nu}}$$

The energy density is

$$T_{0}^{ONGT} = \frac{1}{2a^{6}} \left[\left(\partial_{\eta} \vec{B} + \vec{\partial} \times \vec{E} \right)^{2} + \left(\vec{\partial} \cdot \vec{B} \right)^{2} + a^{2} m_{B}^{2} \left(\vec{E}^{2} + \vec{B}^{2} \right) \right] \equiv \rho_{NGT}$$

•When $m_B^2 \rightarrow 0$ the only contribution to the spectrum comes from long. B-field

$$\begin{split} \left\langle 0 \mid \overline{T}_{0}^{0NGT} \mid 0 \right\rangle &= \int \frac{dk}{k} P_{NGT}(\vec{k}, \eta) \\ P_{NGT}(\vec{k}, \eta) &= \frac{k^{3}}{2\pi^{2}} T_{0}^{0NGT}(\vec{k}, \eta) \\ P_{NGT}(\vec{k}, \eta) &= \frac{H_{T}^{4}}{4\pi^{2}a^{4}} \left\{ \left| \partial_{\eta} B_{\vec{k}}^{L}(\eta) + \frac{a'}{a} B_{\vec{k}}^{L}(\eta) \right|^{2} + \left(k^{2} + a^{2}m_{B}^{2}\right) \mid B_{\vec{k}}^{L}(\eta) \mid^{2} \right\} \end{split}$$

NB1: this spectrum is relevant for coupling to (Einstein) gravity NB2: for coupling to (CMB) photons, $\left\langle 0 | \hat{\vec{B}}^{L}(\vec{x},\eta)^{2} | 0 \right\rangle = \int \frac{dk}{k} P'_{NGT}(\vec{k},\eta)$ may be relevant

°13°

Spectrum in radiation era

The spectrum in radiation era for a massless Kalb-Ramond field

$$P_{NGT}(\vec{k},\eta) = \frac{H_{T}^{4}}{8\pi^{2}a^{4}} \left\{ \left(1 + \frac{1}{2}\frac{1}{(k\eta)^{2}}\right) - \frac{\sin(2k\eta)}{k\eta} - \frac{1}{2}\frac{\cos(2k\eta)}{(k\eta)^{2}} \right\}$$

NB: The energy density in the field, $\rho_{NGT} = \int dk P_{NGT} / k$ is dominated by the ultraviolet, where it exhibits a log divergence,

$$\rho_{\text{NGT}} \approx \frac{H_{\text{I}}^{4}}{8\pi^{2}a^{4}} \ln \left(k_{\text{max}} \eta \right)$$

- on superhorizon scales (k η <1) the energy density spectrum scales as P~k².
- on subhorizon scales (kη>1),
 P ~ const.+ small oscillations

To be compared with the 1 year WMAP CMB spectrum (2003)

NB: NGT field is important at horizon crossing, gravitational waves dominate on superhorizon scales

Spectrum in matter era

The spectrum in matter era is shown in figure (log-log plot)

NB1: The bump in the power spectrum in matter era is caused by the modes which are superhorizon at equality, and which after equality begin scaling as nonrelativistic matter

$$P_{\rm NGT} \propto 1/a^3$$

NB2: The log divergent part of the spectrum continues scaling in matter era as, $P_{NGT} \propto \frac{1}{a^4}$ such that the energy density becomes eventually dominated by the "bump"

$$\rho_{\text{NGT}} \approx \frac{H_{\text{I}}^4}{8\pi^2 a^3 a_{eq}}$$

Radiation era: massive B field spectrum^{17°}

- $B_k^L \propto$ Hankel function (de Sitter inflation)
- $B_k^L \propto Whittaker function (radiation era)$

Radiation era: massive B field spectrum $(2)^{18}$

Discussion

Since during matter era, all momenta with $k\eta_{eq} < 1$, corresponding to today's (comoving) momentum, $k_{phys} < H_0 \sqrt{z_{eq}} / 2$ ($z_{eq} \approx 3230$) ($l_{phys} \ge \pi/k_{phys} \sim \pi \times 150 \text{ Mpc}$) scale as nonrelativistic matter, the amplitude of their perturbations grow, which begs the question: Can the nonsymmetric field be a DARK MATTER CANDIDATE?

- → ANSWER: PROBABLY NOT (similarly as primoridial gravitational waves cannot) Basically, the NGT field lacks power on small scales)
- It has been suggested that NGT can provide an explanation for DARK ENERGY. Our results for the energy density scaling show that this is not the case.
- The simplest coupling to photons, $\delta L_{NGT-EM} \supset -\eta^{\mu\alpha}\eta^{\nu\beta}F_{\mu\nu}B_{\alpha\beta}$ breaks gauge invariance. The relevant spectrum is in this case, $P'_{NGT} \propto P_{NGT}/k^2$, which is scale invariant on superhorizon scales, and scales as $1/k^2$ on subhorizon scales
- Introducing a small mass MB (less than horizon) does not alter these conclusions dramatically (additional power on small scales)
- A more complete study of the spectra of geometric NGTs is a subject of a forthcoming publication