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˚ 2˚
Introduction: Historical remarks

NGT: metric tensor is not symmetric

µν µνµνg = g +B

µν (µν)g = g , ( )[ ]
1B g g g
2µν µν µν νµ= = −

In 1925 Einstein proposed it as a unified theory of gravity and electromagnetism

It does not work since
(a) Geodesic equation does not reproduce Lorentz force
(b) Equations of motion do not impose divergenceless magnetic field

In 1979 Moffat proposed it as a generalised theory of gravitation: 
Nosymmetric Theory of Gravitation (NGT)

Advantages of NGT
- Unlike Einstein’s Theory of General Relativity, contains no singularities? 

Moffat



˚ 3˚Introduction: Absence of singularities
E.g. most general static spherically symmetric solution
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From geodesic equation: when l >2m a test particle motion 
stops at r=l >2m before it reaches event horizon

Problems with Nosymmetric Theory of Gravitation (NGT)

(a) When quantised, in its simplest disguise, NGT contains ghosts

(b) There is instability (growing mode) even in Minkowski background

Fix: make the nonsymmetric field massive

That way one gets rid of ghosts and unstable mode



˚ 4˚Introduction: Modified Newton Law
Moffat (2004) has proposed that NGT can explain the flat 
rotation curves of galaxies without invoking dark matter
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Moffat takes                                          to explain flat rotation curves12
0 0 Sunr 14kpc, M 10 M≈      ≈

To explain light lensing in clusters, Moffat takes a different 15
0 SunM 10 M ≈

Also: Pioneer 10 & 11 acceleration anomaly (Moffat 2004)



˚ 5˚Introduction: Galaxy rotation curves
Fits to the rotation curves for the galaxies: NGC1560, NGC 2903, NGC 4565
and NGC 5055 (Moffat 2004)
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˚ 6˚NGT Action
In the weak B-field limit, the NGT action can be written as

matterNGTHES S S S= + +

mass is added for stability (Kunstater et al 1984; Damour, Deser, McCarthy 1993), 
but it also arises from a cosmological term Λ, since

( )4
HE

N

1S d x g R 2
16 G

= − − +
π� Λ

The Hilbert-Einstein action

The action of the Nonsymmetric Theory of Gravitation (to 2nd order)
4 2
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At linearised order, first term is gauge invariant, while the whole action may 
be diffeomorphism invariant (with the appropriate choice of constants c, c’)

B B→ +µν µν µ ν ν µ∂ Λ − ∂ Λ



˚ 7˚Conformal space-times
The (symmetric part of) the metric tensor in a conformal space time is

2
µνg = a  ,     =µν µνη η diag(1,-1,-1,-1)

a = scale factor

The NGT action is then

Note that in the limit a -> ∞ (late time inflation), the kinetic term 
drops out, and the field fluctuations can grow without a limit 
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( ) ( )4 2
scalar

1S d x a
2
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µ αη ∂ φ ∂ φ

This is opposite of a scalar field action (kinetic term), for which 
fluctuations get frozen in



˚ 8˚Physical Modes
Consider the electric-magnetic decomposition of the Kalb-Ramond B-field

NB1: is missing           may be dynamical
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Lorentz “gauge” (consistency)  condition                      impliesB 0=µν
µ νρη ∂

T
· B 0 B=                       →  
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∂  
NB2: equation is not independent (given by the transverse electric field)

T
B
�

NB3: L
E 0=
��

NB4:  From                                   is a function of         
T TT T
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�� ��� ��

η∂ ∂ x 
Physical DOFs (massive case): pseudovector (spin = 1, parity = +)B

�

Physical DOF (massless case): longitudinal magnetic field
L

B
�

Ei = spin 1, parity -
Bi = spin 1, parity +



˚ 9˚Canonical quantisation
Impose canonical commutation relation on B-field and its canonical momentum
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NB: Contrary to a scalar field (which decays with the scale factor),    
the Kalb-Ramond B-field grows with the scale factor a



˚ 10˚Vacuum fluctuations in de Sitter inflation
In De Sitter inflation the scale factor is,                     such that   I
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The conformal rescaling of the longitudinal B-mode
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NB: In conformal vacuum there is very little particle production during inflation



Radiation era ˚ 11˚

In radiation era,                          such that the mode equation     I Ia H ( H )= η η > 1/
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which is Bessel’s equation of index 3/2. The solution is (Bunch-Davies)
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Ik H<<NB: For superhorizon modes at the end of inflation (a=1):



Matter era ˚ 12˚

In matter era,                               and the mode equation( ) 2     I
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eq

Ha ( )
4

= η + η η > η
η

2

k
eq

6k B ( ) 0
� �

+ − =� �
� �� �

�

�

2
η 2∂ η

(η + η )

which is Bessel’s equation of index 5/2, whose solution is
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Spectrum of energy density ˚ 13˚

The stress energy tensor of a Kalb-Ramond field is standard,                

NGT NGT2 ST
gg

=
−µν

µν

δ
δ

The energy density is
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NB1: this spectrum is relevant for coupling to (Einstein) gravity

NB2: for coupling to (CMB) photons,                                 may be relevant  �  
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˚ 14˚Spectrum in radiation era
The spectrum in radiation era for a massless Kalb-Ramond field        
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on superhorizon scales (kη<1) 
the energy density spectrum 
scales as P~k².
on subhorizon scales (kη>1),
P ~ const.+ small oscillations

NB: The energy density in the field,                   
is dominated by the ultraviolet, where it exhibits a 
log divergence, 

NGT NGTdk P /k=  �ρ
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a
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8π
To be compared with the 1 year 
WMAP CMB spectrum (2003)



Comparison with gravitational wave spectrum˚ 15˚

massless NGT field spectrum: �  
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NB: NGT field is important at horizon crossing, 
gravitational waves dominate on superhorizon scales



Spectrum in matter era ˚ 16˚

The spectrum in matter era is shown in figure (log-log plot)

on superhorizon scales (kη<1) 
the energy density spectrum 
scales as P~k².
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on subhorizon scales 
(kη>a/aeq), P~const.

on subhorizon scales 
(1<kη<a/aeq), P~1/k² 

NB1: The bump in the power spectrum in matter era is caused by the modes which are  
superhorizon at equality, and which after equality begin scaling as nonrelativistic matter

3
NGTP a∝ 1/

NB2: The log divergent part of the spectrum continues scaling in matter era as,           
such that the energy density becomes eventually dominated by the “bump” 
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Radiation era: massive B field spectrum˚ 17˚

( )inflationSitterdefunctionHankel∝LBk

( )eraradiationfunctionWhittaker∝LBk

Small B field massSmall B field mass

Large B field massLarge B field mass



Radiation era: massive B field spectrum (2)˚ 18˚

Large B field mass

Small B field mass



˚ 19˚Discussion
Since during matter era, all momenta with         corresponding to today’s (comoving) k 1<  ,eqη

0 eq eqphysk H z /2 z 3230)<    ( ≈momentum,
scale as nonrelativistic matter,  the amplitude of their perturbations grow, which 
begs the question: Can the nonsymmetric field be a DARK MATTER CANDIDATE?

( )phys physk ~ x150 Mpc≥   π/ π l

ANSWER: PROBABLY NOT (similarly as primoridial gravitational waves cannot)

It has been suggested that NGT can provide an explanation for DARK ENERGY. 
Our results for the energy density scaling show that this is not the case.

Basically, the NGT field lacks power on small scales)

Introducing a small mass mB (less than horizon) does not alter these conclusions 
dramatically (additional power on small scales)

The simplest coupling to photons,                         breaks gauge invariance. 
The relevant spectrum is in this case,                   which is scale invariant 

NGT EML F B− ⊃ − µα νβ
µν αβδ η η
2

NGT NGTP' P /k ,∝
on superhorizon scales, and scales as 1/k² on subhorizon scales

A more complete study of the spectra of geometric NGTs is a 
subject of a forthcoming publication
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