E-WIMPs

Do We Live in a False Vacuum?

Leszek Roszkowski

Astro–Particle Theory and Cosmology Group Sheffield, England

COSMO-05, Bonn, 28 Aug. - 1 Sep. '05 - p.1

•

WIMP?

WIMP?

a weak and cowardly person (English Oxford Dictionary)

WIMP?

weakly interacting massive particle

CMSSM, neutralino LSP, small $\tan \beta$

$\tan\beta \lesssim 45$

neutralino (bino) χ LSP green: $0.094 < \Omega_{\chi} h^2 < 0.129$

tightly constrained

COSMO-05, Bonn, 28 Aug. - 1 Sep. '05 - p.3

•

•

E-WIMP?

E-WIMP?

exotic WIMP? exciting WIMP?

E-WIMP?

extremely weakly interacting massive particle

extremely weakly interacting massive particle

COSMO-05, Bonn, 28 Aug. – 1 Sep. '05 – p.4

well-motivated particle candidates s.t. $\Omega \sim 0.1$

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP
- axion a
- axino \widetilde{a}
- gravitino \widetilde{G}
- wimpzilla,...

...Must go beyond SM...,

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP
- axion a
- axino \widetilde{a}
- gravitino \widetilde{G}
- wimpzilla,...

SUSY (still) most promising

COSMO-05, Bonn, 28 Aug. - 1 Sep. '05 - p.5

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP
- axion a
- axino \widetilde{a}
- gravitino \widetilde{G}
- wimpzilla,...

...Each interesting energy scale $\ \Leftrightarrow$ CDM candidate

Recent activity...

axino – work with:

• L. Covi, J.E. Kim, PRL'99 (hep-ph/9905212);

 L. Covi, H.-B. Kim, J.E. Kim, JHEP'01 (hep-ph/0101009);

• L. Covi, M. Small, JHEP'02 (hep-ph/0206119);

• L. Covi, R. Ruiz de Austri, M. Small, JHEP'04 (hep-ph/0402240)

• A. Brandenburg+L. Covi+K. Hamaguchi+L.R.+F. Steffen, PLB '05 (hep-ph/0501287)

related recent work:

- H.-B. Kim, J.E. Kim, hep-ph/0108101
- D. Hooper, L.-T. Wang, hep-ph/0402220
- A. Brandenburg, F.D. Steffen, hepph/0406021

gravitino – work with:

- R. Ruiz de Austri, JHEP'05
- (hep-ph/0408227)
- Cerdeño+K.-
- Y. Choi+Jedamzik+L.R.+Ruiz de Austri, in prep.

related recent work:

- al et Buchmüller (BBP, '98, BBB '00)
- Feng et al, '02-'04
- Ellis, Olive et al. (EOSS),
- hep-ph/0312262

• . . .

- Allahverdi+Drees, hep-ph/0408289
- Jedamzik, Lemoine, Moultaka,

hep-ph/0504021, hep-ph/0506129 and astro-ph/0508141

• E-WIMPs: axinos and gravitinos (mostly in CMSSM)

E–WIMPs: axinos and gravitinos (mostly in CMSSM)
non–thermal production (NTP)

- E-WIMPs: axinos and gravitinos (mostly in CMSSM)
- non-thermal production (NTP)
- thermal production (TP)

- E-WIMPs: axinos and gravitinos (mostly in CMSSM)
- non-thermal production (NTP)
- thermal production (TP)
- constraints from BBN and CMB

- E-WIMPs: axinos and gravitinos (mostly in CMSSM)
- non-thermal production (NTP)
- thermal production (TP)
- constraints from BBN and CMB
- constraints from false vacuua

- E-WIMPs: axinos and gravitinos (mostly in CMSSM)
- non-thermal production (NTP)
- thermal production (TP)
- constraints from BBN and CMB
- constraints from false vacuua
- results

'Exotic' SUSY WIMPs: \widetilde{G} and \widetilde{a}

historically first: \widetilde{G} : Pagels+Primack, Weinberg ('82) \widetilde{a} : Tamvakis+Wyler ('82) $\widetilde{\gamma}$: Goldberg ('83) χ : Ellis, *et al* (EHNOS) ('84)

'Exotic' SUSY WIMPs: \widetilde{G} and \widetilde{a}

• neutral, Majorana, chiral fermions

historically first: \widetilde{G} : Pagels+Primack, Weinberg ('82) \widetilde{a} : Tamvakis+Wyler ('82) $\widetilde{\gamma}$: Goldberg ('83) χ : Ellis, *et al* (EHNOS) ('84)

'Exotic' SUSY WIMPs: \widetilde{G} and \widetilde{a}

• neutral, Majorana, chiral fermions

historically first:

 \widetilde{G} : Pagels+Primack, Weinberg ('82)

 \widetilde{a} : Tamvakis+Wyler ('82)

 $\widetilde{\boldsymbol{\gamma}}$: Goldberg ('83)

 χ : Ellis, *et al* (EHNOS) ('84)

(assume usual gravity mediated SUSY breaking)

	axino	gravitino
spin	1/2	3/2
interaction	$\sim 1/f_a^2$	$\sim 1/M_{ m P}^2$
mass	$ ot\propto M_{ m SUSY}$	$\propto M_{ m SUSY}$

• mass model dependent $f_a \sim 10^{9-12} \text{ GeV} - PQ$ scale take it as free parameter $M_{\rm P} = 2.4 \times 10^{18} \text{ GeV} - \text{reduced Planck mass}$ $M_{\rm SUSY} \sim 100 \text{ GeV} - 1 \text{ TeV} - \text{soft SUSY mass scale}$

۲

consider Kim, Shifman, Veinstein, Zakharov model

heavy singlet (chiral) quark superfield

consider Kim, Shifman, Veinstein, Zakharov model

heavy singlet (chiral) quark superfield

• axino-gluino-gluon (dim-5)

$$\mathcal{L}(ilde{a}g ilde{g}) = rac{lpha_s}{8\pi(f_a/N)}ar{ ilde{a}}\gamma_5\sigma^{\mu
u}\widetilde{g}^bG^b_{\mu
u}$$

dominant in \widetilde{a} production from scatterings (high T_R)

consider Kim, Shifman, Veinstein, Zakharov model

heavy singlet (chiral) quark superfield

axino–gluino–gluon (dim–5)

$$\mathcal{L}(\tilde{a}g\tilde{g}) = rac{lpha_s}{8\pi(f_a/N)} \bar{\tilde{a}}\gamma_5 \sigma^{\mu
u} \tilde{g}^b G^b_{\mu
u}$$

dominant in \widetilde{a} production from scatterings (high T_R)

• axino-squark-quark (dim-4) $\mathcal{L}(\tilde{a}q\tilde{q}) = g_{eff}^{L/R} \tilde{q}_j^{L/R} \bar{q}_j P_{R/L} \gamma^5 \tilde{a}$

dominant in \widetilde{a} production from \widetilde{q} decays (low T_R)

consider Kim, Shifman, Veinstein, Zakharov model

heavy singlet (chiral) quark superfield

• axino-gluino-gluon (dim-5)

$$\mathcal{L}(\tilde{a}g\tilde{g}) = rac{lpha_s}{8\pi(f_a/N)} \overline{\tilde{a}}\gamma_5 \sigma^{\mu
u} \widetilde{g}^b G^b_{\mu
u}$$

dominant in \tilde{a} production from scatterings (high T_R)

• axino-squark-quark (dim-4) $\mathcal{L}(\tilde{a}q\tilde{q}) = g_{eff}^{L/R} \, \tilde{q}_j^{L/R} \, \bar{q}_j P_{R/L} \gamma^5 \tilde{a}$

dominant in \widetilde{a} production from \widetilde{q} decays (low T_R)

• ...plus $\tilde{a}\gamma\chi$ interactions...

dominant in \tilde{a} production from NLSP freezeout and decay

COSMO-05, Bonn, 28 Aug. - 1 Sep. '05 - p.9

•

COSMO-05, Bonn, 28 Aug. – 1 Sep. '05 – p.10

L. Covi+J.E. Kim+LR, PRL'99

consider:

•

(KSVZ model)

L. Covi+J.E. Kim+LR, PRL'99

consider: (KSVZ model)

- $\widetilde{a} = \mathsf{LSP}$
- $\chi = \text{NLSP}$ (LOSP)

L. Covi+J.E. Kim+LR, PRL'99

consider: (KSVZ model)

- $\widetilde{a} = \mathsf{LSP}$
- $\chi = \mathsf{NLSP}$ (LOSP)
 - χ first freezes out

consider: (KSVZ model)

- $\widetilde{a} = \mathsf{LSP}$
- $\chi = \mathsf{NLSP}$ (LOSP)
 - χ first freezes out
 - then decays $\chi
 ightarrow \widetilde{a} \, \gamma$

L. Covi+J.E. Kim+LR, PRL'99

COSMO-05, Bonn, 28 Aug. - 1 Sep. '05 - p.10

• $\chi = \mathsf{NLSP}$ (LOSP)

consider:

• $\widetilde{a} = \mathsf{LSP}$

L. Covi+J.E. Kim+LR, PRL'99

• χ first freezes out • then decays $\chi \to \widetilde{a} \gamma$

 $au(\chi o \widetilde{a}\,\gamma) \simeq 0.3\,{
m sec}\left(rac{100\,{
m GeV}}{m_\chi}
ight)^3$

(KSVZ model)

...before BBN

consider:

• $\widetilde{a} = \mathsf{LSP}$

L. Covi+J.E. Kim+LR, PRL'99

• $\chi = \text{NLSP}$ (LOSP) • χ first freezes out • then decays $\chi \to \tilde{a} \gamma$ $\tau(\chi \to \tilde{a} \gamma) \simeq 0.3 \sec\left(\frac{100 \text{ GeV}}{m_{\chi}}\right)^3$.

(KSVZ model)

...before BBN

• NTP:
$$n_{\widetilde{a}} = n_{\chi}$$

 $\Omega_{\widetilde{a}}^{\text{NTP}} = \frac{m_{\widetilde{a}}}{m_{\chi}} \Omega_{\chi}$

NTP: non-thermal production

COSMO-05, Bonn, 28 Aug. - 1 Sep. '05 - p.10
Axino WIMP

consider:

 $\widetilde{a} = \mathsf{LSP}$

L. Covi+J.E. Kim+LR, PRL'99

• $\chi = \text{NLSP}$ (LOSP) • χ first freezes out • then decays $\chi
ightarrow \widetilde{a} \, \gamma$ - 3 $au(\chi$ -

(KSVZ model)

$$ightarrow \widetilde{a} \, \gamma) \simeq 0.3 \, {
m sec} \left(rac{100 \, {
m GeV}}{m_\chi}
ight)$$

...before BBN

• • •

• NTP:
$$n_{\tilde{a}} = n_{\chi}$$

 $\Omega_{\tilde{a}}^{\text{NTP}} = \frac{m_{\tilde{a}}}{m_{\chi}} \Omega_{\chi}$
NTP: non-thermal production
• TP: $q q \rightarrow \tilde{a} \tilde{g}, \quad \tilde{q} \rightarrow \tilde{a} q, \dots$
 $\Omega_{\tilde{a}}^{\text{TP}} \propto \sigma(\tilde{a} - \text{prod.})$

TP

L. Covi+H.-B. Kim, J.E. Kim+L.R., JHEP '01

σ	$(\widetilde{a} -$	- prod.)	:	$\underline{\alpha_s^3}$	(s)
				$\overline{4\pi^2 {\left(f_a/N ight)^2}} O_n $	

analogous to \widetilde{G} (Moroi, et al., '93)

n	Process	$\overline{\sigma}_n$	$n_{ m spin}$	$n_{ m F}$	$\eta_1\eta_2$
Α	$g^a + g^b ightarrow ilde{a} + ilde{g}^c$	$ rac{1}{8} f^{abc} ^2$	4	1	1
В	$g^a + ilde{g}^b o ilde{a} + g^c$	$rac{5}{16} f^{abc} ^2 \left[\log \left(s/m_{ ext{eff}}^2 ight) - rac{15}{8} ight]$	4	1	$\times \frac{3}{4}$
С	$g^a+ ilde q_k o ilde a+q_j$	$rac{1}{8} T^a_{jk} ^2$	2	$N_F imes 2$	1
D	$g^a + q_k o ilde{a} + ilde{q}_j$	$rac{1}{32} T^{a}_{jk} ^{2}$	4	$N_F imes 2$	$\frac{3}{4}$
Е	$ ilde q_j + q_k o ilde a + g^a$	$rac{1}{16} T^a_{jk} ^2$	2	$N_F imes 2$	$\frac{3}{4}$
F	$ ilde{g}^a + ilde{g}^b o ilde{a} + ilde{g}^c$	$rac{1}{2} f^{abc} ^2\left[\log\left(s/m_{ ext{eff}}^2 ight)-rac{29}{12} ight]$	4	1	$\frac{3}{4} \frac{3}{4}$
G	$ ilde{g}^a + q_k o ilde{a} + q_j$	$rac{1}{4} T^a_{jk} ^2\left[\log\left(s/m^2_{ ext{eff}} ight)-2 ight]$	4	N_F	$\frac{3}{4} \frac{3}{4}$
Н	$ ilde{g}^a + ilde{q}_k o ilde{a} + ilde{q}_j$	$rac{1}{4} T^a_{jk} ^2\left[\log\left(s/m_{ ext{eff}}^2 ight)-rac{15}{8} ight]$	2	$N_F imes 2$	$\frac{3}{4}$
I	$q_k + ar q_j o ilde a + ilde g^a$	$rac{1}{24} T^a_{jk} ^2$	4	N _F	$\frac{3}{4} \frac{3}{4}$
J	$ ilde q_k+ ilde q_j o ilde a+ ilde g^a$	$rac{1}{24} T^a_{jk} ^2$	1	$N_F imes 2$	1

• solve Boltzmann eq, include scatt. and decay processes

• 12 classes of processes, B, F, G, H log-divergent: introduce plasmon mass regulator

NTP vs TP

general MSSM:

Covi+H.-B. Kim+J.E. Kim+Roszkowski, JHEP '01 (hep-ph/0101009)

...axino cold DM: \Rightarrow low $T_R \lesssim 10^6 \, { m GeV}$

NTP vs TP

Covi+Roszkowski+Ruiz de Austri+Small, JHEP'04 (hep-ph/0402240)

NTP dominant

TP dominant

NTP vs TP

Covi+Roszkowski+Ruiz de Austri+Small, JHEP'04 (hep-ph/0402240)

NTP dominant

TP dominant

low $T_R!$

Covi+LR+Ruiz de Austri+Small, JHEP'04 (hep-ph/0402240)

CMSSM, (standard) χ LSP

Covi+LR+Ruiz de Austri+Small, JHEP'04 (hep-ph/0402240)

CMSSM, (standard) χ LSP

CMSSM, \widetilde{a} LSP, $m_{\widetilde{a}} \simeq m_{\chi}$

Covi+LR+Ruiz de Austri+Small, JHEP'04 (hep-ph/0402240)

CMSSM, \tilde{a} LSP, $m_{\tilde{a}} \simeq m_{\gamma}$

CMSSM, (standard) χ LSP

NLSP: either standard "missing energy" signature (χ) or charged ($\tilde{\tau}_1$) NLSP lifetime $\gg 10^{-7} \sec \Rightarrow$ at LHC it will appear stable

COSMO-05, Bonn, 28 Aug. - 1 Sep. '05 - p.14

2000

Covi+LR+Ruiz de Austri+Small, JHEP'04 (hep-ph/0402240)

CMSSM, \tilde{a} LSP, $m_{\tilde{a}} \simeq m_{\gamma}$

CMSSM, (standard) χ LSP

if $\tilde{\tau}_1$ -NLSP \Rightarrow a striking signature at the LHC: a stable, charged, massive ($\sim \mathcal{O}(100 \text{ GeV})$) particle

COSMO-05, Bonn, 28 Aug. - 1 Sep. '05 - p.14

2000

The Gravitino \widetilde{G}

spin-3/2 partner of the graviton

in gravity—mediated SUSY breaking models

 $m_{\widetilde{G}} = rac{F}{\sqrt{3}M_{
m P}}$

 $F \sim 10^{11}\,{
m GeV}-{
m SUSY}$ breaking scale $M_{
m P}=2.4 imes 10^{18}\,{
m GeV}-{
m reduced}$ Planck mass soft masses $\sim F/M_{
m P}$

natural to expect: $m_{\widetilde{G}} \sim \text{GeV} - \text{TeV}$

The Gravitino \widetilde{G}

spin-3/2 partner of the graviton

in gravity—mediated SUSY breaking models

 $m_{\widetilde{G}} = rac{F}{\sqrt{3}M_{
m P}}$

 $F \sim 10^{11}\,{
m GeV} - {
m SUSY}$ breaking scale $M_{
m P} = 2.4 imes 10^{18}\,{
m GeV} - {
m reduced}$ Planck mass soft masses $\sim F/M_{
m P}$

natural to expect: $m_{\tilde{G}} \sim \text{GeV} - \text{TeV}$

• if it is the LSP...

can \widetilde{G} give $\Omega_{ m CDM} h^2 \sim 0.1?$

 \widetilde{G} : cold (not warm) DM

(analogous to \widetilde{a} LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

(analogous to \widetilde{a} LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

(analogous to \widetilde{a} LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

- $\widetilde{G} = \mathsf{LSP}$
- NLSP (χ or $\widetilde{ au}_1$) first freezes out, then decays

(analogous to \widetilde{a} LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

• $\widetilde{G} = \mathsf{LSP}$

• NLSP $(\chi \text{ or } \widetilde{\tau}_1)$ first freezes out, then decays $\tau(\text{NLSP} \to \widetilde{G} + \gamma/\tau) \sim 10^8 \sec\left(\frac{100 \text{ GeV}}{m_{\text{NLSP}}}\right)^5 \left(\frac{m_{\widetilde{G}}}{100 \text{ GeV}}\right)^2 \dots$ $(\text{NLSP} = \chi(\simeq \widetilde{B}), \widetilde{\tau}_1)$

...well after BBN

NLSP Lifetime

•

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

NLSP Lifetime

۲

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

•
$$\chi$$
-NLSP: $\chi \to \widetilde{G}\gamma$ dominant
 $\Gamma \simeq \frac{(\cos \theta_W)^2}{48\pi M_P^2} \frac{m_\chi^5}{m_{\widetilde{G}}^2} \left(1 - \frac{m_{\widetilde{G}}^2}{m_\chi^2}\right)^3 \left(1 + 3\frac{m_{\widetilde{G}}^2}{m_\chi^2}\right)$
when $\chi \simeq \text{bino}$

$$\widetilde{\tau}_{1} - \text{NLSP: } \widetilde{\tau}_{1} \to \widetilde{G}\tau \text{ dominant}$$

$$\Gamma = \frac{1}{48\pi M_{P}^{2}} \frac{m_{\widetilde{\tau}_{1}}^{5}}{m_{\widetilde{G}}^{2}} \left(1 - \frac{m_{\widetilde{G}}^{2}}{m_{\widetilde{\tau}_{1}}^{2}}\right)^{4}$$

NLSP Lifetime

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

G

•
$$\chi$$
-NLSP: $\chi \to \widetilde{G}\gamma$ dominant
 $\Gamma \simeq \frac{(\cos \theta_W)^2}{48\pi M_P^2} \frac{m_\chi^5}{m_{\widetilde{G}}^2} \left(1 - \frac{m_{\widetilde{G}}^2}{m_\chi^2}\right)^3 \left(1 + 3\frac{m_{\widetilde{G}}^2}{m_\chi^2}\right)$
when $\chi \simeq \text{bino}$
• $\widetilde{\tau}_1$ -NLSP: $\widetilde{\tau}_1 \to \widetilde{G}\tau$ dominant
 $\Gamma = \frac{1}{48\pi M_P^2} \frac{m_{\widetilde{\tau}_1}^5}{m_{\widetilde{C}}^2} \left(1 - \frac{m_{\widetilde{G}}^2}{m_{\widetilde{C}}^2}\right)^4$

 τ_1 ,

COSMO-05, Bonn, 28 Aug. - 1 Sep. '05 - p.17

longer lifetimes \Rightarrow stronger constraints

(analogous to \widetilde{a} LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

• $\widetilde{G} = \mathsf{LSP}$

• NLSP $(\chi \text{ or } \widetilde{\tau}_1)$ first freezes out, then decays $\tau(\text{NLSP} \to \widetilde{G} + \gamma/\tau) \sim 10^8 \sec\left(\frac{100 \text{ GeV}}{m_{\text{NLSP}}}\right)^5 \left(\frac{m_{\widetilde{G}}}{100 \text{ GeV}}\right)^2 \dots$ $(\text{NLSP} = \chi(\simeq \widetilde{B}), \widetilde{\tau}_1)$

...well after BBN

(analogous to \widetilde{a} LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

• $\widetilde{G} = \mathsf{LSP}$

• NLSP $(\chi \text{ or } \widetilde{\tau}_1)$ first freezes out, then decays $\tau(\text{NLSP} \to \widetilde{G} + \gamma/\tau) \sim 10^8 \sec\left(\frac{100 \text{ GeV}}{m_{\text{NLSP}}}\right)^5 \left(\frac{m_{\widetilde{G}}}{100 \text{ GeV}}\right)^2 \dots$ $(\text{NLSP} = \chi(\simeq \widetilde{B}), \widetilde{\tau}_1)$...well after BBN

 \Rightarrow NTP:

NTP: non-thermal production (neglect other possible contr's)

$$\Omega_{\widetilde{G}}^{ ext{NTP}} = rac{m_{\widetilde{G}}}{m_{ ext{NLSP}}} \, \Omega_{ ext{NLSP}}$$

(analogous to \widetilde{a} LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

• $\widetilde{G} = \mathsf{LSP}$

• NLSP $(\chi \text{ or } \widetilde{\tau}_1)$ first freezes out, then decays $\tau(\text{NLSP} \rightarrow \widetilde{G} + \gamma/\tau) \sim 10^8 \sec\left(\frac{100 \text{ GeV}}{m_{\text{NLSP}}}\right)^5 \left(\frac{m_{\widetilde{G}}}{100 \text{ GeV}}\right)^2 \dots$ $(\text{NLSP} = \chi(\simeq \widetilde{B}), \widetilde{\tau}_1)$...well after BBN

 \Rightarrow NTP:

NTP: non-thermal production (neglect other possible contr's)

$$\Omega_{\widetilde{G}}^{ ext{NTP}} = rac{m_{\widetilde{G}}}{m_{ ext{NLSP}}} \, \Omega_{ ext{NLSP}}$$

Feng, et al (FST 02-04), MSSM

Ellis, et al (EOSS 03), CMSSM

(analogous to \widetilde{a} LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

• $\widetilde{G} = \mathsf{LSP}$

• NLSP $(\chi \text{ or } \widetilde{\tau}_1)$ first freezes out, then decays $\tau(\text{NLSP} \to \widetilde{G} + \gamma/\tau) \sim 10^8 \sec\left(\frac{100 \text{ GeV}}{m_{\text{NLSP}}}\right)^5 \left(\frac{m_{\widetilde{G}}}{100 \text{ GeV}}\right)^2 \dots$ $(\text{NLSP} = \chi(\simeq \widetilde{B}), \widetilde{\tau}_1)$

...well after BBN

 $\Rightarrow \text{ NTP: non-thermal production (neglect other possible contr's)} \\ \Omega_{\tilde{G}}^{\text{NTP}} = \frac{m_{\tilde{G}}}{m_{\text{NLSP}}} \Omega_{\text{NLSP}} \\ \Rightarrow \text{ TP: } q \ q \rightarrow \tilde{G} \ \tilde{g}, \ \tilde{q} \rightarrow \tilde{G} \ q, \dots \\ \Omega_{\tilde{G}}^{\text{TP}} \simeq 0.2 \left(\frac{T_R}{10^{10} \text{ GeV}} \right) \left(\frac{100 \text{ GeV}}{m_{\tilde{G}}} \right) \left(\frac{m_{\tilde{g}}(\mu)}{1 \text{ TeV}} \right)^2 \\ \text{Bolz+Brandenburg+Buchmüller ('00)} \end{aligned}$

(analogous to \widetilde{a} LSP)

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227

• $\widetilde{G} = \mathsf{LSP}$

• NLSP $(\chi \text{ or } \tilde{\tau}_1)$ first freezes out, then decays $\tau(\text{NLSP} \to \tilde{G} + \gamma/\tau) \sim 10^8 \sec\left(\frac{100 \text{ GeV}}{m_{\text{NLSP}}}\right)^5 \left(\frac{m_{\tilde{G}}}{100 \text{ GeV}}\right)^2 \dots$ $(\text{NLSP} = \chi(\simeq \tilde{B}), \tilde{\tau}_1)$

...well after BBN

 $\Rightarrow \text{ NTP: non-thermal production (neglect other possible contr's)} \\ \Omega_{\widetilde{G}}^{\text{NTP}} = \frac{m_{\widetilde{G}}}{m_{\text{NLSP}}} \Omega_{\text{NLSP}} \\ \Rightarrow \text{ TP: } q \ q \rightarrow \widetilde{G} \ \widetilde{g}, \ \widetilde{q} \rightarrow \widetilde{G} \ q, \dots \\ \Omega_{\widetilde{G}}^{\text{TP}} \simeq 0.2 \left(\frac{T_R}{10^{10} \text{ GeV}} \right) \left(\frac{100 \text{ GeV}}{m_{\widetilde{G}}} \right) \left(\frac{m_{\widetilde{g}}(\mu)}{1 \text{ TeV}} \right)^2 \\ \text{Bolz+Brandenburg+Buchmüller ('00)} \end{aligned}$

At high $T_R \gtrsim 10^9$ GeV, TP is important

$\Omega_{\widetilde{G}}^{\mathrm{TP}}h^2$ – Thermal Production

with thermal QCD effects, Bolz+Brandenburg+Buchmüller ('00)

$$\Omega_{\widetilde{G}}^{\mathrm{TP}}\simeq 0.2\left(rac{T_R}{10^{10}\,\mathrm{GeV}}
ight)\left(rac{100\,\mathrm{GeV}}{m_{\widetilde{G}}}
ight)\left(rac{m_{\widetilde{g}}(\mu)}{1\,\mathrm{TeV}}
ight)$$

old calculation, cf. Ellis, et al. (EKN, '84), Moroi, et al. (MMY '93)

Relic Abundance

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227 → JHEP

• NTP: contribution to $\Omega_{\widetilde{G}}h^2$ from NLSP freezeout and decay

• $\Omega_{\tilde{G}}h^2 = \Omega_{\tilde{G}}^{\rm NTP}h^2 + \Omega_{\tilde{G}}^{\rm TP}h^2$ (sum of NTP and TP contributions)

Relic Abundance

Roszkowski+Ruiz de Austri+K.-Y. Choi, hep-ph/0408227 → JHEP

• NTP: contribution to $\Omega_{\widetilde{G}}h^2$ from NLSP freezeout and decay

• $\Omega_{\widetilde{G}}h^2 = \Omega_{\widetilde{G}}^{\text{NTP}}h^2 + \Omega_{\widetilde{G}}^{\text{TP}}h^2$ (sum of NTP and TP contributions)

at large $T_R \sim 10^9$ GeV TP dominates

"gravitino problem"

NTP: late ($\tau \sim 10^{2-10}\,{\rm sec}$) decays can be dangerous to BBN and/or CMB

"gravitino problem"

NTP: late ($\tau \sim 10^{2-10}$ sec) decays can be dangerous to BBN and/or CMB

"gravitino problem"

NTP: late ($\tau \sim 10^{2-10}\,{\rm sec}$) decays can be dangerous to BBN and/or CMB

• χ NLSP $\chi \rightarrow \tilde{G}\gamma$ \Rightarrow EM showers $\chi \rightarrow \tilde{G}Z, \tilde{G}$ Higgs, $\tilde{G}\gamma^*$ \Rightarrow had showers

"gravitino problem"

NTP: late ($\tau \sim 10^{2-10}\,{\rm sec}$) decays can be dangerous to BBN and/or CMB

• χ NLSP $\chi \rightarrow \tilde{G}\gamma$ \Rightarrow EM showers $\chi \rightarrow \tilde{G}Z, \tilde{G}$ Higgs, $\tilde{G}\gamma^*$ \Rightarrow had showers

"gravitino problem"

NTP: late ($\tau \sim 10^{2-10}$ sec) decays can be dangerous to BBN and/or CMB

• χ NLSP $\chi \rightarrow \tilde{G}\gamma$ \Rightarrow EM showers $\chi \rightarrow \tilde{G}Z, \tilde{G}$ Higgs, $\tilde{G}\gamma^*$ \Rightarrow had showers • $\tilde{\tau}_1$ NLSP $\tilde{\tau}_1 \rightarrow \tilde{G}\tau$ \Rightarrow EM showers $\tilde{\tau}_1 \rightarrow \tilde{G}\tau Z, \tilde{G}\nu_\tau W, \tilde{G}\tau\gamma^*/Z^*$ \Rightarrow had showers

"gravitino problem"

NTP: late ($\tau \sim 10^{2-10}$ sec) decays can be dangerous to BBN and/or CMB

- χ NLSP $\chi \to \tilde{G}\gamma$ $\Rightarrow \text{EM showers}$ $\chi \to \tilde{G}Z, \tilde{G} \text{ Higgs}, \tilde{G}\gamma^*$ $\Rightarrow \text{ had showers}$ • $\tilde{\tau}_1 \to \tilde{G}\tau$ $\Rightarrow \text{ EM showers}$ $\tilde{\tau}_1 \to \tilde{G}\tau Z, \tilde{G}\nu_\tau W, \tilde{G}\tau\gamma^*/Z^*$
- CMB: late injection of EM energy \Rightarrow possible distortion of blackbody spectrum BE dist'n f'n $f_{\gamma}(E) = 1/(e^{E/(kT)+\mu} - 1)$ (μ - chemical potential) current bound: $\mu < 9 \times 10^{-5}$

... BBN Constraints

Some main processes:

- $10^1 \sec \leq \tau \leq 10^2 \sec$: 4He overprod'n: $n + p \rightarrow D \rightarrow {}^4He$
- $au \gtrsim 10^2$ sec: *D* overprod'n: $n + p \rightarrow D$, $n + {}^4He \rightarrow D$
- $10^4 \sec \leq au \leq 10^6 \sec$: *D* overdestruction: $\gamma + D \rightarrow n + p$
- $10^6 \sec \leq au \leq 10^8 \sec$: *D* overproduction: $\gamma + {}^4He \rightarrow D + D$

Kawasaki+Kohri+Moroi (Jun '04)

note $B_h=1$ (CMSSM $\sim 10^{-2}-10^{-4}$)

BBN Constraint

• apply $D/H + Y_p + {^7Li}/H + {^3He}/D + {^6Li}/{^7Li}$

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, in prep. new, improved analysis follow the initial hep-ph/0408227 (L.R.+Ruiz de Austri+K.-Y. Choi)

- self-consistent, both EM & HAD, vary B_h as f'n of SUSY parameters
- adopt abundances of light elements from observations (Jedamzik):

 $2.2 imes 10^{-5} < D/H < 5.3 imes 10^{-5}$ $0.232 < Y_p < 0.258$ $1.11 imes 10^{-10} < {^7Li}/H < 4.5 imes 10^{-10}$ ${^3He}/D < 1.72$ ${^6Li}/{^7Li} < 0.1875$

- Jedamzik's inputs somewhat more conservative than KKM
- Jedamzik's analysis more complete (EM+HAD) than Cyburt, et al., (CEFO) (EM only)

Example: $m_{\widetilde{G}} = m_0$

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, in prep. apply all BBN: $D/H + Y_p + {}^7Li/H + {}^3He/D + {}^6Li/{}^7Li$

Example: $m_{\widetilde{G}} = m_0$

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, in prep. apply all BBN: $D/H + Y_p + {}^7Li/H + {}^3He/D + {}^6Li/{}^7Li$

• only $\tilde{\tau}_1$ -NLSP region remains allowed

⇒ at LHC see charged "stable" LOSP $\tilde{\tau}_1$ (instead of "expected" neutral χ)

confirmed Feng, et al (Apr 04)

• low T_R basically excluded (NTP part only), must include TP contribution to $\Omega_{\widetilde{G}}h^2$ $\Rightarrow m_{\widetilde{G}} = \mathcal{O}(100 \text{ GeV})$: (typically) need high $T_R \sim 10^9 \text{ GeV}$

Feng+Su+Takayama, hep-ph/0404231

...used stronger BBN constraints (from KKM)

 χ region excluded, stau region OK

Two types of constraints:

Two types of constraints:

• charge and/or color breaking (CCB) minima;

Two types of constraints:

- charge and/or color breaking (CCB) minima;
- unbounded from below (UFB) directions (typically more constraining).

Two types of constraints:

- charge and/or color breaking (CCB) minima;
- unbounded from below (UFB) directions (typically more constraining). most

dangerous UFB-3= $(H_u, \nu_{L_i}, e_{L_j}, e_{R_j}), i \neq j$ (Casas, Lleyda, Muñoz)

Two types of constraints:

- charge and/or color breaking (CCB) minima;
- unbounded from below (UFB) directions (typically more constraining). most

dangerous UFB-3= $(H_u, \nu_{L_i}, e_{L_j}, e_{R_j})$, $i \neq j$ (Casas, Lleyda, Muñoz)

• use 1–loop improved RGE to obtain masses and couplings, plug them into a tree–level potential, minimize at $\hat{Q} \sim \max(\lambda_{top} | H_u |, M_{SUSY})$

• condition

$$V_{ ext{UFB}-3}(Q=\hat{Q})>V_{ ext{SM min}}=-rac{1}{8}\left(g'^2+g_2^2
ight)\left(v_u^2-v_d^2
ight)^2$$

... UFB

Casas, Lleyda, Muñoz (98)

for any value of $|H_u| < M_{GUT}$ s.t.

$$|H_u| > \sqrt{rac{\mu^2}{4\lambda_{e_j}^2} + rac{4m_{L_i}^2}{g'^2 + g_2^2} - rac{|\mu|}{2\lambda_{e_j}}}$$

one finds

 $V_{\rm UFB-3} = (m_{H_u}^2 + m_{L_i}^2)|H_u|^2 + \frac{|\mu|}{\lambda_{e_j}}(m_{L_j}^2 + m_{e_j}^2 + m_{L_i}^2)|H_u| - \frac{2m_{L_i}^4}{g'^2 + g_2^2}$ otherwise

$$V_{
m UFB-3} = m_{H_u}^2 |H_u|^2 + rac{|\mu|}{\lambda_{e_j}} (m_{L_j}^2 + m_{e_j}^2) |H_u| + rac{1}{8} (g'^2 + g_2^2) \left[|H_u|^2 + rac{|\mu|}{\lambda_{e_j}} |H_u|
ight]^2$$

- -ve contribution: $m_{H_u}^2 |H_u|^2$
- +ve contribution mostly from terms $\propto 1/\lambda_{e_j}$

 \Rightarrow constraint strongest for λ_{τ}

• large $\tan \beta$: UFB condition becomes stronger

Impact of UFB Constraint

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, in prep.

 $\tan eta = 10, A_0 = 0$

Impact of UFB Constraint

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, in prep.

 $\tan\beta=10,\,A_0=0$

Impact of UFB Constraint

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, in prep.

 $\tan\beta=10,\,A_0=0$

 $\tan\beta=50,\,A_0=0$

(1000) (1000) (1

\Rightarrow most of the $\tilde{\tau}_1$ -NLSP region excluded

COSMO-05, Bonn, 28 Aug. - 1 Sep. '05 - p.28

Combine UFB and BBN

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, in prep.

 $\overline{|\mathsf{E.g.}, T_R = 10^9} ~\mathsf{GeV}$

 $aneta=10,\,m_{\widetilde{G}}=m_0$

Combine UFB and BBN

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, in prep.

 $\overline{\mathsf{E.g.},\,T_R}=10^9\,\mathrm{GeV}$

 $aneta=10,\,m_{\widetilde{G}}=m_0$

 $aneta=50,\,m_{\widetilde{G}}=0.2m_0$

Combine UFB and BBN

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri, in prep.

E.g., $T_R=10^9\,{
m GeV}$

all excluded

 $aneta=10,\,m_{\widetilde{G}}=m_0$

 $aneta=50,\,m_{\widetilde{G}}=0.2\overline{m_0}$

small regions left allowed

COSMO-05, Bonn, 28 Aug. - 1 Sep. '05 - p.29

\widetilde{a} or \widetilde{G} LSP?, Will we ever know?

stau decays at the LHC?

Brandenburg+Covi+Hamaguchi+L.R.+Steffen, hep-ph/0501287 → PLB

\widetilde{a} or \widetilde{G} LSP?, Will we ever know?

stau decays at the LHC?

Brandenburg+Covi+Hamaguchi+L.R.+Steffen, hep-ph/0501287 → PLB

COSMO-05, Bonn, 28 Aug. - 1 Sep. '05 - p.30

\widetilde{a} or \widetilde{G} LSP?, Will we ever know?

stau decays at the LHC?

Brandenburg+Covi+Hamaguchi+L.R.+Steffen, hep-ph/0501287 → PLB

different event distributions

while the neutralino remains the prime suspect...

• \widetilde{a} and \widetilde{G} E–WIMPs are viable cold DM candidates

while the neutralino remains the prime suspect...

• \widetilde{a} and \widetilde{G} E–WIMPs are viable cold DM candidates

both well motivated by particle physics

while the neutralino remains the prime suspect...

• \widetilde{a} and \widetilde{G} E–WIMPs are viable cold DM candidates

both well motivated by particle physics

...distinct cosmology and collider phenomenology

Summary

while the neutralino remains the prime suspect...

• \widetilde{a} and \widetilde{G} E–WIMPs are viable cold DM candidates

both well motivated by particle physics

...distinct cosmology and collider phenomenology

• if \widetilde{a} LSP and CDM:

- \Rightarrow low $T_R \lesssim 10^6 \, {
 m GeV}$
- \Rightarrow basically no bounds from BBN
- \Rightarrow NLSP either χ or $\tilde{\tau}_1$ to be partially it will appeal mostly stable but...

Summary

while the neutralino remains the prime suspect...

• \widetilde{a} and \widetilde{G} E–WIMPs are viable cold DM candidates

both well motivated by particle physics

...distinct cosmology and collider phenomenology

- if \widetilde{a} LSP and CDM:
 - \Rightarrow low $T_R \lesssim 10^6 \, {
 m GeV}$
 - \Rightarrow basically no bounds from BBN
 - \Rightarrow NLSP either χ or $\tilde{\tau}_1$ to be partially it in appeal mostly stable but...
- if \widetilde{G} LSP and CDM ($m_{\widetilde{G}} = \mathcal{O}(100 \text{ GeV})$):
 - \Rightarrow strong bounds from BBN and CMB
 - $\Rightarrow \chi$ NLSP seems ruled out, $\tilde{\tau}_1$ NLSP region partially allowed
 - $\Rightarrow T_R \lesssim 10^9 \, {
 m GeV}$

but... TP contribution to $\Omega_{\widetilde{G}}h^2$ important

Summary - cont.

• both \widetilde{a} and \widetilde{G} : if $\widetilde{\tau}_1$ is NLSP \Rightarrow we live in a false vacuum

we may find this out at LHC!

Summary - cont.

• both \widetilde{a} and \widetilde{G} : if $\widetilde{\tau}_1$ is NLSP \Rightarrow we live in a false vacuum

we may find this out at LHC!

... if insist on the Universe to occupy global minimum, then

• $ilde{ au}_1$ NLSP region almost ruled out

 $\Rightarrow \widetilde{a}$ WIMP as CDM remains allowed

Summary - cont.

• both \widetilde{a} and \widetilde{G} : if $\widetilde{\tau}_1$ is NLSP \Rightarrow we live in a false vacuum

we may find this out at LHC!

... if insist on the Universe to occupy global minimum, then

- $ilde{ au}_1$ NLSP region almost ruled out
 - $\Rightarrow \widetilde{a}$ WIMP as CDM remains allowed

$\Rightarrow \widetilde{G}$ WIMP as CDM seems basically excluded

in the CMSSM, for reasonable ranges of mass parameters: small regions remain allowed

...still exploring...

COSMO-05, Bonn, 28 Aug. – 1 Sep. '05 – p.32

E-WIMPs?

E-WIMPs?

exciting WIMPs?