Stability of Dilaton in String Gas Cosmology

Kyoto University

Sugumi Kanno & Jiro Soda

Introduction

- The superstring theory predicts 10-d.
- The most important issue is the origin of 4-d and the stability of moduli.
- The flux compactification is well known. However, it is difficult to explain 4-d and stabilize the volume moduli in this approach.
- The string gas cosmology may explain 4-d and can stabilize the volume moduli.

String Gas Cosmology

Brandenberger & Vafa (1989)

- The 10-d universe is toroidally compactified.
- The universe is filled with a closed string gas.
- 4-d spacetime becomes large due to annihilation of windings.
- Other 6-d are expected to remain small and stable.
- The dilaton ϕ should be stable ($g_s = e^{\phi}$ string coupling).

Pair annihilation of windings can occur only in less than 3 spatial dimensions.

Stability of Dilaton: numerical results

To test the picture in the simplest case, we performed numerical calculation.

$$ds^{2} = -dt^{2} + a^{2}(t)\delta_{ij}dx^{i}dx^{j}$$

$$-d \text{ universe}$$

$$+b^{2}(t)\delta_{ab}dy^{a}dy^{b}$$
6-d internal space

The goal of this talk

■ To understand why the dilaton is stabilized in our numerical results.

Cf. Watson & Brandenberger 2003

To construct a 4-d effective action in a T- dual invariant manner.

Cf. Battefeld & Watson 2004

To show the stability of all moduli in a simple compactification model.

Cf. Brandenberger, Cheung, and Watson 2005

Plan of this talk

- Review of the string spectrum
- T-dual invariant 4-d effective action
- Stable compactification
- Conclusion

String spectrum

String mass spectrum in compactified spacetime

massless modes

$$n=m=0$$
 , $N=\overline{N}=1$, $A_1^{\mu\dagger}=\overline{a}_1^{\nu\dagger}=0$, $A_2^{\mu}>0$ graviton, 2 form , dilaton

 μ, ν are 10-d spacetime indices.

T-duality

$$R \leftrightarrow \frac{1}{R}$$
 $n \leftrightarrow m$

$$R = \ell_s = 1$$

is the self-dual radius.

string scale

massless modes at self dual point Patil & Brandenberger 2005

$$n = m = \pm 1, N = 1, \overline{N} = 0$$

$$n = -m = \pm 1$$
, $N = 0$, $\bar{N} = 1$

Low energy effective action

$$G_{\mu
u}$$
 graviton $B_{\mu
u}$ 2 form ϕ dilaton

Weyl invariance

$$S = \frac{1}{2\kappa_{10}^{2}} \int d^{10}x \sqrt{-G}e^{-2\phi} \left[R + 4(\partial\phi)^{2} - \frac{1}{12}H^{2} \right] \qquad H = dB$$

Dimensional reduction

$$ds^{2} = g_{\mu\nu}(x)dx^{\mu}dx^{\nu} + \gamma_{ab}(x)dy^{a}dy^{b} \qquad y^{a} \sim y^{a} + 1$$
4-d universe 6-d toroidal space

$$\Rightarrow H_{\mu ab} = \partial_{\mu} B_{ab}(x)$$

T-dual invariant 4-d effective action

$$S = \frac{1}{2\kappa^{2}} \int d^{4}x \sqrt{-g} e^{-2\overline{\phi}} \left[R + 4 \left(\partial \overline{\phi} \right)^{2} - \frac{1}{4} \gamma^{ac} \gamma^{bd} \partial^{\mu} \gamma_{ab} \partial_{\mu} \gamma_{cd} - \frac{1}{4} \gamma^{ab} \gamma^{cd} \partial^{\mu} B_{ac} \partial_{\mu} B_{bd} \right]$$

T-dual invariant

T-dual transformation

$$\widetilde{\overline{\phi}} = \overline{\phi}$$

$$\widetilde{\Gamma} = (\Gamma - B\Gamma^{-1}B)^{-1}$$

$$\widetilde{B} = -\Gamma^{-1}B(\Gamma - B\Gamma^{-1}B)^{-1}$$

Matrix notation

$$(\Gamma)_{ab} = \gamma_{ab}$$

$$(B)_{ab} = B_{ab}$$

Action for a string gas

In the conventional cosmology, it is assumed the relativistic particles occupy the universe. As the everything comes from a string, it is natural to imagine the universe filled with a string gas.

Here, the adiabaticity is assumed, namely, the matter action is represented by the action of a string gas with constant background fields γ_{ab} , β_{ab} replaced by functions of spacetime coordinates $\gamma_{ab}(x)$, $\gamma_{ab}(x)$.

$$S_{gas} = -\mu_4 \int d^4 x \sqrt{-g_{00}} \ E$$

Comoving number density of a string gas

$$E = \sqrt{g^{ij} p_i p_j + M^2(\gamma_{ab}, B_{ab})}$$
T-dual invariant

A model of Compactfication

$$M_4 \otimes T_2 \otimes T_2 \otimes T_2$$

We can analyze each torus separately.

volume moduli

$$\Gamma = \frac{b^2}{\eta} \begin{pmatrix} 1 & \xi \\ \xi & \xi^2 + \eta^2 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & \beta \\ -\beta & 0 \end{pmatrix}$$

flux moduli

.

4-d effective action: Einstein frame

Shifted dilaton volume flux
$$S_E = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left[R - 2 \left(\partial \overline{\phi} \right)^2 - 2 \left(\partial \log b \right)^2 - \frac{1}{2b^4} \left(\partial \beta \right)^2 \right]$$
 shape
$$-\frac{1}{2\eta^2} \left\{ \left(\partial \eta \right)^2 + \left(\partial \xi \right)^2 \right\}$$

$$-\mu_4 \int d^4x \sqrt{-g_{00}} \sqrt{g^{ij} p_i p_j + e^{2\bar{\phi}}} \underline{M^2(b, \eta, \xi, \beta)}$$

1

Mass of a string

Effective potential

T-duality and Self-dual point

T-dual transformation

$$\tilde{\eta} = \frac{\eta}{\eta^2 + \xi^2}$$

$$\tilde{\eta} = \frac{\eta}{\eta^2 + \xi^2} \qquad \tilde{\xi} = -\frac{\xi}{\eta^2 + \xi^2}$$

$$\tilde{b}^2 = \frac{b^2}{b^4 + \beta^2} \qquad \tilde{\beta} = -\frac{\beta}{b^4 + \beta^2}$$

$$\tilde{\beta} = -\frac{\beta}{b^4 + \beta^2}$$

Self-dual point

$$\eta = 1, \xi = 0, b = 1, \beta = 0$$

$$B_{ab} = 0$$

Moduli Stabilization I

The first kind of string gas massless at the self dual point

Mass formula for this wrapped string gas

$$M_1^2 = \frac{1}{\eta b^2} (\xi - \beta)^2 + \frac{\eta}{b^2} + \frac{b^2}{\eta} - 2$$

Flat direction

$$\xi = \beta \quad \eta = b^2$$

$$\eta = b^2$$

Moduli Stabilization II

The second kind of string gas massless at the self dual point

Mass formula for this wrapped string gas

$$M_{2}^{2} = \frac{1}{\eta b^{2}} (1 + \beta \xi)^{2} + \frac{\eta \beta^{2}}{b^{2}} + \frac{b^{2} \xi^{2}}{\eta} + \eta b^{2} - 2$$

$$\beta^2 = \frac{b^4 \xi^2}{\eta^2}$$

Flat direction
$$\beta^2 = \frac{b^4 \xi^2}{\eta^2}$$
 $1 + \beta \xi = -\frac{\eta^2 \beta}{\xi}$

Stable compactification

Let us consider both contributions together. As the would-be flat directions are orthogonal to each other, the flat direction disappears at the end of the day.

Volume, shape, and flux moduli get stabilized!

Moduli stabilization induces the dilaton stabilization

Effect

Effective potential

$$-\mu_4 \int d^4x \sqrt{-g_{00}} \sqrt{g^{ij} p_i p_j + e^{2\overline{\phi}} M^2(b, \eta, \xi, \beta)}$$

The dilaton potential disappears!

Equation for the dilaton

 $X : \mathsf{moduli}$

$$\frac{d^{2}}{dt^{2}}\left(e^{-2\phi}\right) + 3H\frac{d}{dt}\left(e^{-2\phi}\right) + 6\dot{X}\frac{d}{dt}\left(e^{-2\phi}\right) = 0$$

Hubble damping

Modulation due to moduli oscillation

We have thus understood our numerical result and shown that the dilaton is marginally stable.

Further challenges in String Gas cosmology

- It is necessary to connect this string gas phase to the standard cosmological phase.
- In the matter dominated phase, the dilaton will start to run again. We need to invent a mechanism to stabilize the dilaton in this phase. We guess the loop corrections may stabilize the dilaton.
- We need to explain the origin of structure of the universe in the context of string gas scenario.

Summary

- We have clarified why the dilaton shows the damped oscillation in numerical results.
- We have constructed the T-dual invariant 4-d effective action.
- We have shown the stability of

compactification.