Non-Gaussian perturbations with two scalar fields

Antti Väihkönen

Helsinki Institute of Physics and University of Helsinki, Finland

COSMO 05

Motivation

Talk based on two papers:

(I) K. Enqvist, AV: hep-ph/0405103 (JCAP)

"Non-Gaussian perturbations in hybrid inflation"

(II) AV: astro-ph/0506304

"Comment on non-Gaussianity in hybrid inflation"

First consistent 2*nd* order perturbation computation of a two field model presented in (I)

Later Lyth and Rodríguez re-estimated ¹ the result and computed it with δN formalism ²

 \rightarrow disagreeing results

Aim of my work in (II) was to tackle the discrepancy

²D. Lyth, Y. Rodriguez: astro-ph/0504045

¹D. Lyth, Y. Rodriguez: astro-ph/0502578 (PRD)

- Explain what is Non-Gaussianity
- 2nd order CPT ³ computation for hybrid inflation
- Key points of δN approach and the result
- Compare and discuss the results

³Cosmological perturbation theory

Gaussianity vs. Non-Gaussianity

Gaussian

- · free field theory
- no interactions
- linear EOM
- · Fourier modes independent
- · 2-point correlator enough

Non-Gaussian

- · interactions
- non-linear EOM
- · Fourier modes coupled
- · n-point correlators needed

UNIVERSITY OF HEISIN

- · parameterizing difficult
- Observations agree with Gaussianity do not demand it
 Models predict additional Non-Gaussianity
 Different models different amount and type
- Observations only now starting to be sensitive enough
- Requires going to 2nd order

Gaussianity vs. Non-Gaussianity

Gaussian

- · free field theory
- no interactions
- linear EOM
- · Fourier modes independent
- · 2-point correlator enough

Non-Gaussian

- · interactions
- non-linear EOM
- · Fourier modes coupled
- · n-point correlators needed

UNIVERSITY OF HEISIN

- · parameterizing difficult
- Observations agree with Gaussianity do not demand it
- Models predict additional Non-Gaussianity
 Different models different amount and type
- Observations only now starting to be sensitive enough
- Requires going to 2nd order

Metric and matter fields

$$\begin{cases} g_{00} = -(1+2\phi_1+\phi_2) \\ g_{ij} = a^2(1-2\psi_1-\psi_2) \end{cases} \Rightarrow \begin{array}{c} G_{\mu\nu} \\ \text{to } 2nd \text{ order} \end{cases}$$
$$\begin{cases} \varphi = \varphi_0 + \varphi_1 + \frac{1}{2}\varphi_2 \\ \sigma = \sigma_0 + \sigma_1 + \frac{1}{2}\sigma_2 \end{array} \Rightarrow \begin{array}{c} T_{\mu\nu} \\ \text{to } 2nd \text{ order} \end{cases}$$
$$\Longrightarrow \text{Einstein equations to } 2nd \text{ order} \end{cases}$$

Curvature perturbation \mathcal{R}

- With one field in 1st order $\mathcal{R} = \psi + H \frac{\delta \varphi}{\dot{\varphi}}$
- Extended for two fields
- Expanded to 2*nd* order $\mathcal{R} = \mathcal{R}_1 + \frac{1}{2}\mathcal{R}_2$

Demand invariance in change of slicing

Applying the Formalism to Hybrid Inflation

Potential
$$V = V_0 - \frac{1}{2}m_0^2\sigma^2 + \frac{1}{4}\lambda\sigma^4 + \frac{1}{2}m^2\varphi^2 + \frac{1}{2}g^2\sigma^2\varphi^2$$

where $V_0 = m_0^2/4\lambda$

Key features

- Transverse field at the bottom of the valley, $\sigma_0 = 0$
- No terms linear in σ in the potential

σ contribution decouples

- No σ in 1st order Einstein equations (Klein–Gordon only)
- No σφ-mixing terms in 2nd order (σ additional)
- Formalism applies to other models also (e.g. Linde–Mukhanov)

2nd Order Perturbations in Hybrid Inflation

Estimating the expression for $\mathcal{R}_{2,\sigma}$

- Scales outside horizon
- Effective masses small, $m \lesssim H$
- *R*₁ roughly constant
- *H*, m_{σ} , *m*, η , η_{σ} roughly constant
- time evolution of ϵ , $\varphi_0, \varphi_1, \sigma_1$ important

Make an order of magnitude estimate $|\Delta^{-1}(\partial_i \mathcal{R}_1 \partial^i \mathcal{R}_1)| \sim |\mathcal{R}_1|^2$

The result

$$\mathcal{R}_{2,\sigma} \sim \mathcal{O}(\epsilon,\eta,\eta_{\sigma}) \; e^{2\Delta N(\eta-\eta_{\sigma})} \; |\mathcal{R}_{1}|^{2} \; .$$

$$\epsilon \equiv \frac{M_P^2}{2} \left(\frac{1}{V} \frac{\partial V}{\partial \varphi} \right)^2, \quad \eta \equiv \frac{M_P^2}{V} \frac{\partial^2 V}{\partial \varphi^2}, \quad \eta_\sigma \equiv \frac{M_P^2}{V} \frac{\partial^2 V}{\partial \sigma^2}$$

δN Approach

- Each point in space treated separately surrounded by FRW universe; local expansion parameter N
- Inhomogeneous behaviour of the universe obtained by patching the points together

Curvature perturbation ζ	
Definition	$g_{ij} = a^2(t) \; e^{2\zeta(t,oldsymbol{x})} \; \gamma_{ij}(t,oldsymbol{x})$
Obtained from	$\zeta = \frac{\partial N}{\partial \phi_i} \delta \phi^i + \frac{1}{2} \frac{\partial^2 N}{\partial \phi_i \partial \phi_j} \delta \phi^i \delta \phi^j$

The Result

$$\zeta_{2,\sigma} \sim \mathcal{O}(\eta_{\sigma}) \; e^{2\Delta N(\eta - \eta_{\sigma})} \; |\zeta_1|^2$$

UNIVERSITY OF HELSINK

Comparing the results

CPT

$$\mathcal{R}_{2,\sigma} \sim \mathcal{O}(\epsilon,\eta,\eta_{\sigma}) \; e^{2\Delta N(\eta-\eta_{\sigma})} \; |\mathcal{R}_{1}|^{2} \; .$$

δN

$$\zeta_{2,\sigma} \sim \mathcal{O}(\eta_{\sigma}) \; \mathrm{e}^{2\Delta N(\eta - \eta_{\sigma})} \; |\zeta_1|^2 \; .$$

- Results are of the same form and of the same order
- The exponential factor does not provide enhancement
 - → Non-Gaussianity unobservable

Drop non-local terms $\Delta^{-1}(\partial_i g \partial^i g)$, $\Delta^{-1}(g \Delta g)$ in CPT case $\rightarrow \mathcal{O}(\eta_{\sigma})$ coefficient only. Justification?

UNIVERSITY OF HELSINK

Comparing the results

CPT

$$\mathcal{R}_{2,\sigma} \sim \mathcal{O}(\epsilon,\eta,\eta_{\sigma}) \; e^{2\Delta N(\eta-\eta_{\sigma})} \; |\mathcal{R}_{1}|^{2} \; .$$

δN

$$\zeta_{2,\sigma} \sim \mathcal{O}(\eta_{\sigma}) \; \mathrm{e}^{2\Delta N(\eta - \eta_{\sigma})} \; |\zeta_1|^2 \; .$$

- Results are of the same form and of the same order
- The exponential factor does not provide enhancement
 - → Non-Gaussianity unobservable

Drop non-local terms $\Delta^{-1}(\partial_i g \partial^i g)$, $\Delta^{-1}(g \Delta g)$ in CPT case $\rightarrow O(\eta_{\sigma})$ coefficient only. Justification?

UNIVERSITY OF HELSINK

Summary and Outlook for the Future

Summary

- The results of two different methods (CPT, δN) shown to agree
- Provides confidence on the applicability of the methods

Open questions

- Non-local terms $\Delta^{-1}(\partial_i g \partial^i g)$ and $\Delta^{-1}(g \Delta g)$
- Mode-mode couplings in second order: preheating studies^a implicate they might be important

^aK. Enqvist, A. Jokinen, A. Mazumdar, T. Multamäki, AV: astro-ph/0411394 (PRL), hep-ph/0501076 (JCAP), hep-th/0502185 (JHEP to appear)

Summary and Outlook for the Future

Summary

- The results of two different methods (CPT, δN) shown to agree
- Provides confidence on the applicability of the methods

Open questions

- Non-local terms $\Delta^{-1}(\partial_i g \partial^i g)$ and $\Delta^{-1}(g \Delta g)$
- Mode-mode couplings in second order: preheating studies^a implicate they might be important

^aK. Enqvist, A. Jokinen, A. Mazumdar, T. Multamäki, AV: astro-ph/0411394 (PRL), hep-ph/0501076 (JCAP), hep-th/0502185 (JHEP to appear)

UNIVERSITY OF HEISIN