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Concordance model has problems

TO NAME A FEW. . .

Observed emptiness of voids. . . “a crisis for cosmology”
Peebles, ApJ 557 (2001) 495

Complex galaxies at z = 2, quasars at z = 6, epoch of
reionization at z ∼ 20+10

−9 all just a bit “too early”.

With WMAP primordial nucleosynthesis bounds were
pushed beyond those previously accepted, and the
spectral index changed in order to fit the ratio of heights
of the first two Doppler peaks

Various CMBR anisotropy anomalies are seen at large
angles (low spherical harmonic multipoles) in WMAP
data. E.g., Land and Magueijo, astro-ph/0502237; Copi,
Huterer, Schwarz and Starkman, astro-ph/0508047.
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Universe today is lumpy

Universe was smooth at last scattering, but no longer. . .

Average galaxies are located on bubble walls
surrounding voids.

Two recent surveys estimate that 40% of the volume of
the universe is contained in voids of diameter
(29.8 ± 3.5)h−1 Mpc, and (29.2 ± 2.7)h−1 Mpc (Hoyle and
Vogeley, ApJ 566 (2002) 641; ApJ 607 (2004) 751).

There may be evidence of a few voids ten times larger
(Tomita, MNRAS 326 (2001) 287; astro-ph/0505157).

Is the fact that “dark energy” has a value which
becomes important at just the epoch when things go
non-linear more than a coincidence?
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The fitting problem

In an inhomogeneous universe, how do we average
over lumps to make a smooth geometry [Ellis and
Stoeger CQG 4 (1987) 1697]?

How relevant are the idealized homogeneous isotropic
geometries that we use, upon which all our
cosmological parameter estimates are based?

How many levels of structure are relevant?

How do we deal with choices of gauge, such as time
parameters?

In inhomogeneous Lemaître–Tolman–Bondi models we
typically get inhomogeneous time characterizations.
How do we choose an average cosmic time?
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The fitting problem

Much recent interest in the “gravitational back reaction
problem”, starting from the homogeneous state at last
scattering [see Ellis and Buchert, gr-qc/0506106 and
references therein]

Focus is on cosmological perturbation theory.

Kolb, Matarrese, Notari and Riotto hep-th/0503117
claim Primordial inflation explains why the universe is accelerating
today with no dark energy and a Fermilab press release,
stories carried by Reuters

A stampede of order a dozen papers are rushed out to
say Kolb, Matarrese, Notari and Riotto are wrong,
because without dark energy one cannot get cosmic
acceleration [e.g., S. Räsänen, astro-ph/0504005].
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The fitting problem

At the same time I realised there is another solution to
the fitting problem, with no dark energy, no cosmic
acceleration, and better still, quantitative predictions;
and I rushed (too quickly) to get the results out:
gr-qc/0503099, astro-ph/0504192.

Assume like Kolb, Matarrese, Notari and Riotto that (1):
we live in an underdense bubble, S, in a spatially flat
universe with bulk metric

ds2
bulk = −dτ2 + ā2(τ)[dr̄2 + r̄2(dθ2 + sin2 θdφ2)],

where ā(τ) = āi(τ/τi)
2/[3(1+w)], w > −1.

(2) There is no dark energy, just radiation, ordinary
baryonic matter, maybe CDM, and (3) all inhomogeneity
grew from primordial inflation perturbations.
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The average geometry

We see an average geometry with a single isotropic
scale factor a(t). With a local Copernican principle, at
largest scale the fitting problem must involve an
average FRW geometry

ds̃2 = −dt2 + ã2(t)

[
dr2

1 + r2
+ r2(dθ2 + sin2 θ dφ2)

]
,

BUT the time parameter, t, refers to the the clock of a
comoving observer, namely the observer at an average
spatial position on a spatial hypersurface.

Such average observers are in voids.

Average stars in average galaxies live in non-expanding
space, on bubble walls which broke with the Hubble
flow over 10 billion years ago.
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The average geometry

No reason to assume that the solution to the fitting
problem will match the time parameter of our static local
geometry to the expanding space time of comoving
observers in voids, where there are almost no galaxies.

There can be an additional effective gravitational time
dilation where mass is concentrated, in bubble walls.
These are thick and space still expands within them.

Geodesics of “comoving observers” are superfluous.

Only null geodesics (photons) travel cosmological
distances and see the average geometry.

The usual analogy of coins on a balloon is inaccurate.

Neither we nor the galaxies we observe are at average
positions on a spatial hypersurface.
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Gedankenexperiment

With inflation the inhomogeneity is not arbitrary but has
a particular structure: it arose from a particular
spectrum with scale invariance.

Scale invariance - at every scale below a cut-off, B,
assumed larger than S, there are equal proper volumes
of density perturbations with mean density distributed
about bulk average.

On tiny scales relative to S we have a huge sample; the
mean density is therefore close to the bulk.

In an underdense bubble there is a particle horizon
volume selection effect, from “cosmic variance”.

Suppose S contains our entire present horizon volume:
it is a sample of one, not equal to the bulk average. By
assumption it is underdense.
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Particle horizon volume selection

On scales very close to S very few perturbations can fit
into S. The mean of those few perturbations will differ
from the bulk average by a

√
N statistic. Via

Sachs–Wolfe this is the well-known cosmic variance.

Following evolution of an initial small parcel of fluid
overdensity embedded in larger regions of under– and
over–density with mean of the bulk gives average
galaxies presently in bubble walls.

Following evolution of an initial small parcel of fluid with
the initial underdensity of S gives voids.

Void regions only enter past light cones of average
galaxies well after the matter within them has broken
from the Hubble flow.
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Evolving perturbations
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A second homogeneous cosmic time

In inhomogeneous models such as LTB models, local
times are inhomogeneous.

Inflation gives us a second homogeneous cosmic time:
that of the bulk hypersurfaces of true matter
homogeneity, which were the surfaces of homogeneity
within our past light cone at last scattering.

Structure forms bottom up: smaller things first, stars,
star clusters and proto-galaxy dust clouds, as larger
perturbations cross the horizon.

Clock rates in bound systems are frozen in since the
epoch they broke away from the Hubble flow.

Inflationary perturbations are consistent with the past
geometry in our past light cone being that of the bulk
when the first bound systems broke with the flow.
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Temporal Cosmological Principle

The statistical and spatial distribution of primordial
density perturbations is such that when the first bound
systems break away from the Hubble flow and
aggregate into larger average galaxies the cosmic time
parameter, τ , of the bulk universe comes to be the
relevant asymptotic time parameter for bound
gravitational systems in average galaxies which
measure an isotropic CMBR within S.

The above specification defines the inertial frames
bound systems. In effect, we have a new variant of
Mach’s principle. It is the average density of all matter in the
universe, even those parts of the universe which were within the
past light cone prior to inflation but which are presently beyond it,
defines inertial frames.
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Two sets of isotropic observers

voids

bubble walls

Differential stretching of space in voids / bubble walls
but line of sight to last scattering give same average in
both locations

Both locations are isotropic observers, but mean
temperature differs at late times
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The average geometry

The average open FRW geometry is relevant, but must
be related to local clocks by the lapse function
γ(τ) ≡ dt

dτ . The relevant average geometry becomes

ds̃2 = γ2(τ)ds2 ,

ds2 = −dτ2 + a2(τ)

[
dr2

1 + r2
+ r2(dθ2 + sin2 θ dφ2)

]
,

and a ≡ γ−1ã.

Conformally related geometry is relevant for all
measurements defined by null geodesics, including
proper distances and volumes, once we insist on a
“synchronous gauge” adapted to local clocks.
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Various possible Hubble parameters

the bulk Hubble parameter H̄ = 2
3(1+w)τ

only measured in S at early times;

the comoving (void observer) average parameter

H̃(t) ≡ 1

ã

dã

dt
;

the physical Hubble parameter we measure presently

H(τ) ≡ 1

a

da

dτ
;

an effective (never measured) parameter

Heff(τ) ≡ 1

ã

dã

dτ
,
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Matter dominated era
Spherical expansion model. Background of S in
comoving frame known

ã =
aiΩ̃i

2(1 − Ω̃i)
(cosh η − 1) ,

Hit =
Ω̃i

2(1 − Ω̃i)3/2
(sinh η − η) ,

where Ω̃i is the initial density contrast of the bubble, S,
and ai a constant to be set.

Following the standard approach, we assume the initial
density parameter is set sufficiently early that it is very
close to unity: Ω̃i = 1 − δi, 0 < δi � 1.
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Spherical expansion model

Follow standard spherical collapse model

Ω̃ =
ρ̃

ρ̄
= Ω̃i

(ai

ã

)3
(

ā

āi

)2/n

=
18Hi

2(1 − Ω̃i)
3τ2

Ω̃2
i (cosh η − 1)3

.

Actual bulk critical density. Set ā = āi

(
1
nH̄iτ

)n
, where

n = 2/[3(1 + w)] and H̄i = 3nHi/2.

ρ̄ = ρ̄i

( āi

ā

)2/n

=
3n2

8πGτ2
,

Local (effective) bulk critical density

ρcr =
1

6πGτ2
.
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Lapse function

The lapse function is given by

γ(η) =
dt

dτ
=

Heff

H̃
=

3(cosh η + 1)

2(cosh η + 2)
.

At the present epoch

γ0 =
3

2 + Ω̃0

.

Important “constant”: effectively interpolates between
present epoch clocks rates when matching the smallest
bound systems to those moving freely with the average
expansion on the largest cosmological scales in voids.
E.g., void CMBR temperature is γ0T0 ' 4K for T0 ' 2.7K.
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Effective Hubble parameter

Hiτ =
Ω̃i(cosh η − 1)2

3(1 − Ω̃i)3/2 sinh η
.

Heff(η) =
3Hi(1 − Ω̃i)

3/2 sinh3 η

Ω̃i(cosh η − 1)2(sinh2 η + cosh η − 1)

=
Heff0(1 − Ω̃0)

3/2(Ω̃0 + 2)(cosh η + 1)3/2

Ω̃0(cosh η − 1)3/2(cosh η + 2)

where Ω̃0 = 2/(1 + cosh η0).

Observe that at early times, η∼ 0, Heff ∼ H̃ as expected
but at late times, Heff ∼ 3

2H̃.
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Physically measured parameters

Physically measured parameters must be referred to
conformally related geometry

Ω(τ) = γ3(τ)Ω̃(τ),

so that at the present epoch we measure a matter
density fraction

ΩM =
27Ω̃0

(2 + Ω̃0)
3

.

The solution in the physical range 0 < Ω̃0 < 1:

Ω̃0 =
6√
ΩM

sin

[
π

6
− 1

3
cos−1

√
ΩM

]
− 2 .
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Physically measured Hubble parameter

H = Heff − γ̇/γ, (overdot ≡ τ derivative),

H(η) =
H0(2 + Ω̃0)

2(1 − Ω̃0)
3/2 sinh η (cosh2 η + 2 cosh η + 3)

Ω̃0(2 + Ω̃2
0
)(cosh η − 1)2(cosh η + 2)2

.

H0 is the physically measured Hubble constant

Ratio of measured to void Hubble paramter

H

H̃
=

3(cosh2 η + 2 cosh η + 3)

2(cosh η + 2)2
,

so again H ' H̃ as η → 0, and H ' 3
2H̃ at late times as

η → ∞. At the present epoch H0 =
3(2 + Ω̃2

0
)

(2 + Ω̃0)
2
H̃0 .
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Deceleration parameter

q(τ) = −H−2ä/a = −1 − Ḣ/H2, is given by

q(η) =
7 cosh2 η + 10 cosh η + 1

(cosh2 η + 2 cosh η + 3)2
.

It is equal to the bulk deceleration parameter q̄ = 1
2 at

early times η = 0, but at late times as η → ∞, q → 0,
similarly to a Milne universe.

At the present epoch

q0 =
(14 − 4Ω̃0 − Ω̃2

0
)Ω̃2

0

2(2 + Ω̃2
0
)2

.

COSMO05, 30 August 2005 – p.23/38



Expansion age

τ(η) =
Ω̃0(2 + Ω̃2

0
)(cosh η − 1)3/2

H0(1 − Ω̃0)
3/2(Ω̃0 + 2)2(cosh η + 1)1/2

.

Age of the universe of is

τ0 =
2(2 + Ω̃2

0
)

(2 + Ω̃0)
2H0

.

Using best fit values τ0 = 14.4+0.6
−0.5 Gyr for

ΩM = 0.25 ± 0.5, or alternatively τ0 = 15.1+0.5
−0.4 Gyr for a

universe with only baryonic matter, ΩM = 0.105 ± 0.025.
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Expansion age

Importantly, the expansion age is significantly larger at
large z: with H0 = 62.7+1.1

−1.7 km sec−1 Mpc−1, for
ΩM = 0.25 ± 0.5 we find τ = 4.13+0.32

−0.26 Gyr at z = 2;
τ = 1.40+0.16

−0.13 Gyr at z = 6; τ = 0.29+0.05
−0.04 Gyr at z = 20.

For ΩM = 0.105 ± 0.025 then τ = 4.73+0.24
−0.19 Gyr at z = 2,

τ = 1.81+0.14
−0.12 Gyr at z = 6, and τ = 0.44+0.06

−0.04 Gyr at
z = 20.

For ΛCDM with WMAP parameters,
H0 = 71+4

−3 km sec−1 Mpc−1, ΩM = 0.27 ± 0.4 by
comparison τ = 3.35+0.30

−0.44 Gyr at z = 2; τ = 0.95+0.15
−0.11 Gyr

at z = 6; τ = 0.18+0.03
−0.02 Gyr at z = 20.

So with only baryonic matter, early expansion age at
least doubled. COSMO05, 30 August 2005 – p.25/38



Cosmological redshift

1 + z =
a0

a
=

ã0γ

ãγ0

=
(1 − Ω̃0)(2 + Ω̃0)(cosh η + 1)

Ω̃0(cosh η + 2)(cosh η − 1)
.

Solution involves a quadratic equation in cosh η, the
physical branch being given by

cosh η =
−1

2
+

(1 − Ω̃0)(2 + Ω̃0)

2Ω̃0(z + 1)

+

√
Ω̃0z[9Ω̃0z − 2Ω̃2

0
+ 16Ω̃0 + 4] + (Ω̃2

0
+ 2)2

2Ω̃0(z + 1)
.
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Supernova luminosity distance data

Cosmological constant data fit: Tonry et al., ApJ 594 (2003) 1.
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Tonry et al, 2003 supernova data
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Riess et al, 2004 supernova data
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Supernova luminosity distance data

ΛCDM

0 0.5 1 1.5 2

-0.1

0

0.1

0.2

FBM
FRW

∆µ

z

Does the data actually go above the no acceleration
line, as compared to an empty Milne universe, or FB
model?

Note – “acceleration” claim essentially depends on the
large sample of data at z = 0.4–0.6.

FB result is first approximation - ignores bubble “wall”
versus void expansion rate differential.
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Supernova data test, astro-ph/0504192

B.M.N. Carter, B.M. Leith, S.C.C. Ng, A.B. Nielsen and
DLW conducted analysis of all available data: using
“Gold data set” (Riess et al., 2004)

Flat ΛCDM model FB model
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Supernova data test, astro-ph/0504192

ΩM prior Model type B(ΛCDM):(FBM) Model favoured

0.01–0.5 Wide priors 396 ΛCDM

0.2–0.3 favoured CDM range 649 ΛCDM

0.3–0.5 high density CDM 1014 ΛCDM

0.01–0.2 low density CDM 0.53 FBM (slightly)

0.08–0.13 baryonic matter, low D/H 2.6 × 10−5 FBM

0.02–0.06 baryonic matter, high D/H 1.3 × 10−14 FBM

Bayes Factor comparison of a ΩΛ = 1 − ΩM ΛCDM model versus the

FB Model. Prior for H0 = 100h km sec−1 Mpc−1, 58 ≤ h ≤ 72, and
varying priors for ΩM .
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Supernova data test, astro-ph/0504192
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as function of ΩM
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eter space
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Baryon density
Number density of baryons is estimated as

nB =
ΩBρcr0

mp
=

33.7fB(Ω̃0 + 2)Ω̃0h
2

(2 + Ω̃2
0
)2

Number density of CMBR photons unchanged

nγ =
2ζ(3)

π2

(
kBT0

~c

)3

= 4.105 × 108 m−3 .

The present baryon to photon ratio is therefore

ηBγ =
nB

nγ
=

8.209 × 10−8fB(Ω̃0 + 2)Ω̃0h
2

(2 + Ω̃2
0
)2

c.f. standard ηstd = 2.728 × 10−8fBΩMh2.
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Nucleosynthesis bounds - post WMAP

[Yellow = observation; Blue = concordance model prediction]
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Baryon density

Pre Boomerang, WMAP Olive, Steigman and Walker
(2000) quoted two possible ranges at the 95%
confidence level: ηBγ = 1.2–2.8 × 10−10 or

ηBγ = 4.2–6.3 × 10−10, depending on higher or lower
values of the primordial D/H abundance.

If we take H0 = 62.7+1.1
−1.7 km sec−1 Mpc−1, and use the

low D/H (most accepted) bound range we obtain
ΩB = 0.08–0.13.

Baryon density is a factor three higher than otherwise
allowed: more bayonic dark matter OK. Irrespective of
whether there is additional non-baryonic CDM, the dark
matter budget changes substantially.
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Discussion
More corrections to SneIa due to differential expansion
of bubble wall interiors versus voids, (and maybe of
different scale voids, c.f., Tomita, 2001), may explain
“acceleration” as differential Hubble rates

Any net asymmetry in void/wall distribution would give a
CMBR dipole. The dipole anisotropy then contains both
a piece due to our peculiar velocity and a piece due to a
(possibly small) asymmetry in the void/wall distribution.
Present dipole subtraction therefore includes an
anomalous boost, which may account for low multipole
anomalies and the “axis of evil”.

Hot big bang work in progress

First Doppler peak: angular diameter distance not easy,
averaging geodesic deviation over bubbles and voids
not the same as averaging null geodesic lengths. . .
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Conclusion

If it works, a subtle recalibration of many quantities in
cosmology is required. Other averaging issues to
consider; higher order corrections.

It would be ironic that Einstein’s intuition about the
irrevelance of Λ and the importance of Mach’s principle
might both be right and related to inflation.

Even if it is not correct, it is clear that the process of
averaging in a universe with matter as inhomogeneous
as we observe has to be thought about carefully.
Definition of average clocks is crucial.

Physicists love to add wierd terms to the action; but
maybe we just have to think about more complicated
geometries and identification of observables in GR.
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