Quantization of scalar perturbations in brane-world inflation

Hiroyuki Yoshiguchi (University of Tokyo)

Ref. HY and K. Koyama, PRD 71 043519 (2005)

We want to determine the initial condition of cosmological perturbations in brane-world inflation

Randall-Sundrum model + 4D scalar field Maartens, Wands, Bassett, Heard

inflaton

AdS bulk

amplitude of scalar perturbations

$$\langle Q^2 \rangle = \left(\frac{H}{2\pi}\right)^2, \quad Q = \delta \phi - \frac{\dot{\phi}}{H} K$$

Mukhanov-Sasaki variable

in extreme slow-roll limit (0)
(no coupling between inflaton
and bulk perturbations)

However, at first order in

AdS bulk

inflaton

bulk perturbations — scalar field fluctuation correction

Koyama, Langlois, Maartens, Wands

To compute amplitude of **Q** at this order

Quantum theory of bulk gravitational field as well as inflaton field on the brane

For 5D vacuum spacetime ...physical degree of freedom for scalar perturbation = 1

 Ω Master variable in AdS

Mukohyama Kodama, Ishibashi, Seto

AdS bulk

To perform quantization of bulk perturbations, we need action of

Contents of this talk

action of with vacuum brane
action of Q coupled to

2. Background

2. Background

Set up (RS brane-world)

$$S = \int d^{5}x \sqrt{-g_{5}} \left[\frac{1}{2\kappa^{2}} \left({}^{(5)}R + 12\mu^{2} \right) \right] - \int d^{4}x \sqrt{-g_{4}} \left(\sigma + L_{\phi} - \kappa^{2}K \right)$$

the curvature scale of AdS

 $\mu(=1/l)$

the tension of the brane

$$L_{\phi} = V_0 - \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi + V(\phi)$$

where

$$V_0 >> V(\phi)$$

In zero-th order of , spacetime of the brane is de Sitter.

trace of the extrinsic curvature of the brane

2. Background

Background

de Sitter brane in AdS bulk

$$ds^{2} = e^{2W(z)} \left(-dt^{2} + e^{2\alpha(t)} \delta_{ij} dx^{i} dx^{j} + dz^{2} \right)$$

conformal bulk-coordinate

$$e^{\alpha(t)} = e^{Ht}$$

scale factor

$$e^{W(z)} = \left(\frac{\sinh Hz}{\sinh Hz_0}\right)^{-1}$$

 Z_0 location of the brane

Introduction of

Perturbed metric (5D longitudinal gauge)

$$ds^{2} = e^{2W(z)} \left(-(1+2\Phi)dt^{2} + e^{2\alpha(t)}(1+2\Psi)\delta_{ij}dx^{i}dx^{j} + 2Sdtdz + (1+2N)dz^{2} \right)$$

These metric variables satisfy the three constraint equations which are parts of the Einstein equations.

$$N + \Phi + \Psi = 0,$$

- \Phi' - 2\Phi' + 3W' N - \frac{1}{2} \left(\Sigma + HS\right) = 0,
- \Sigma + HN - 2\Phi + 2H\Phi + \frac{1}{2} \left(S' + 3W'S\right) = 0.

These constraints are satisfied if we write the metric variables using the master variable as follows.

$$\begin{split} \Phi &= -\frac{e^{-\alpha - 3W}}{6} \left(2\Omega'' - 3W'\Omega' + \ddot{\Omega} - \mu^2 e^{2W}\Omega \right) \\ S &= e^{-\alpha - 3W} \left(\dot{\Omega}' - W'\dot{\Omega} \right) \\ N &= \frac{e^{-\alpha - 3W}}{6} \left(\Omega'' - 3W'\Omega' + 2\ddot{\Omega} + \mu^2 e^{2W}\Omega \right) \\ \Psi &= \frac{e^{-\alpha - 3W}}{6} \left(\Omega'' - \ddot{\Omega} - 2\mu^2 e^{2W}\Omega \right) \end{split}$$

Using these expressions, we can show that the remaining parts of the Einstein eq. are equivalent to

ons,

$$\Delta_{(S)}'' - W' \Delta_{(S)}' - \mu^2 e^{2W} \Delta_{(S)} = 0,$$
of

$$\dot{\Delta}_{(S)} - W' \Delta_{(S)}' + \mu^2 e^{2W} \Delta_{(S)} = 0,$$

$$\dot{\Delta}_{(S)}' - W' \dot{\Delta}_{(S)} = 0$$
where

$$\Delta \Omega = \delta^{ij} \Omega_{,ij}$$

$$\Delta_{(S)} = e^{2\alpha} \left[\ddot{\Omega} - 3H\dot{\Omega} - (\Omega'' - 3W'\Omega') - \mu^2 e^{2W}\Omega - e^{-2\alpha}\Delta\Omega \right]$$

A replacement of with $\tilde{\Omega}$ does not alter the metric variables.

 $\widetilde{\Omega} = \Omega - \frac{1}{k^2} \Delta_{(S)},$

$$\Phi = -\frac{e^{-\alpha - 3W}}{6} \left(2\Omega'' - 3W'\Omega' + \ddot{\Omega} - \mu^2 e^{2W}\Omega \right)$$
$$S = e^{-\alpha - 3W} \left(\dot{\Omega}' - W'\dot{\Omega} \right)$$
$$N = \frac{e^{-\alpha - 3W}}{6} \left(\Omega'' - 3W'\Omega' + 2\ddot{\Omega} + \mu^2 e^{2W}\Omega \right)$$
$$\Psi = \frac{e^{-\alpha - 3W}}{6} \left(\Omega'' - \ddot{\Omega} - 2\mu^2 e^{2W}\Omega \right)$$

$$\Delta_{(S)} = e^{2\alpha} \left[\ddot{\Omega} - 3H\dot{\Omega} - (\Omega'' - 3W'\Omega') - \mu^2 e^{2W}\Omega - e^{-2\alpha}\Delta\Omega \right]$$

And also, we can set $\Delta_{(S)} = 0$ by this replacement.

satisfy the perturbed Einstein equations.

In summary,

solution

$$\begin{split} \Phi &= -\frac{e^{-\alpha - 3W}}{6} \left(2\Omega'' - 3W'\Omega' + \ddot{\Omega} - \mu^2 e^{2W}\Omega \right) \\ S &= e^{-\alpha - 3W} \left(\dot{\Omega}' - W'\dot{\Omega} \right) \\ N &= \frac{e^{-\alpha - 3W}}{6} \left(\Omega'' - 3W'\Omega' + 2\ddot{\Omega} + \mu^2 e^{2W}\Omega \right) \\ \Psi &= \frac{e^{-\alpha - 3W}}{6} \left(\Omega'' - \ddot{\Omega} - 2\mu^2 e^{2W}\Omega \right) \end{split}$$

where Ω is a solution of the master eq. $\ddot{\Omega} - 3H\dot{\Omega} - (\Omega'' - 3W'\Omega') - e^{2\alpha}\Delta\Omega - \mu^2 e^{2W}\Omega = 0$

$$\Delta_{(S)} = 0$$

General Solution $\Omega = \int d^3k \ dm \ v_m(t) \ u_m(z) \ e^{i\vec{k}\cdot\vec{x}}$

$$\ddot{v}_{m} - 3H\dot{v}_{m} + [m^{2} + k^{2}a^{-2}]v_{m} = 0$$

$$u_{m}'' - 3W'u_{m}' + [m^{2} + \mu^{2}e^{2W}]u_{m} = 0$$

$$v_{m} = \frac{\sqrt{-k\eta}}{(-H\eta)^{2}}Z_{\nu}(-k\eta), \quad \nu^{2} = \frac{9}{4} - \frac{m^{2}}{H^{2}}$$
Bessel
$$u_{m} = (\sinh Hz)^{-1}W_{\nu-1/2}(\cosh Hz)$$
Legendre
$$H^{2} = 9 = 2$$

$$V(z) = -\frac{H^2}{4\sinh^2 Hz} + \frac{9}{4}H^2$$

brane

$$m > \frac{3}{2}H$$
 KK continuum

$$m < \frac{3}{2}H$$

Non-normalizable (for vacuum brane)

second order action

$$S = \int d^5 x \sqrt{-g_5} \left[\frac{1}{2\kappa^2} \left({}^{(5)}R + 12\mu^2 \right) \right] - \int d^4 x \sqrt{-g_4} \left(\sigma + V_0 - \kappa^2 K \right)$$

$$\begin{split} \delta_{2}S &= \int d^{5}x \frac{e^{-3\alpha - 3W}}{6\kappa^{2}} \bigg[\left(\Delta \dot{\tilde{\Omega}} \right)^{2} - \left(\Delta \tilde{\Omega}' \right)^{2} + e^{-2\alpha} \Delta \tilde{\Omega} \Delta^{2} \tilde{\Omega} + \mu^{2} e^{2W} \left(\Delta \tilde{\Omega} \right)^{2} \bigg] \\ &+ \int d^{4}x \frac{e^{\alpha}}{6\kappa^{2}} \bigg[\frac{9}{2} W' \dot{F}^{2} - \frac{3}{2} W' e^{-2\alpha} F \Delta F - W' e^{-4\alpha} \left(\Delta \tilde{\Omega} \right)^{2} - 3e^{-2\alpha} \ddot{F} \Delta \big(\Omega - \tilde{\Omega} \big) \bigg] \end{split}$$

$$\begin{split} F &\equiv \Omega' - W'\Omega \\ \tilde{\Omega} &= \Omega - \frac{1}{k^2} \Delta_{(S)}, \\ \Delta_{(S)} &= e^{2\alpha} \Big[\ddot{\Omega} - 3H\dot{\Omega} - (\Omega'' - 3W'\Omega') - \mu^2 e^{2W}\Omega - e^{-2\alpha} \Delta\Omega \Big] \end{split}$$

This action contains higher derivative terms (time). quantization —> up to second derivatives

$$\rightarrow$$
 set $\Delta_{(S)} = 0$

second order action

$$S = \int d^{5}x \frac{e^{-3\alpha - 3W}}{6\kappa^{2}} \left[(\Delta \dot{\Omega})^{2} - (\Delta \Omega')^{2} + e^{-2\alpha} \Delta \Omega \Delta^{2} \Omega + \mu^{2} e^{2W} (\Delta \Omega)^{2} \right] \\ + \int d^{4}x \frac{e^{\alpha}}{6\kappa^{2}} \left[\frac{9}{2} W' \dot{F}^{2} - \frac{3}{2} W' e^{-2\alpha} F \Delta F + W' e^{-4\alpha} (\Delta \Omega)^{2} \right] \\ \mathbf{Variation with respect to} \qquad F \equiv \Omega' - W' \Omega \\ \left\{ \begin{array}{l} \dot{\Omega} - 3H \dot{\Omega} - (\Omega'' - 3W' \Omega') - e^{2\alpha} \Delta \Omega - \mu^{2} e^{2W} \Omega = 0 \\ F = 0 \qquad \text{junction condition} \\ \end{array} \right\} \\ \text{This is consistent with the eq. obtained by variation with respect to F.} \end{cases}$$

4. Quantum graviton with Vacuum brane

4.Quantum graviton with vacuum brane quantization of heavy modes (m>3H/2)

F = 0 junction condition

$$u_m(z) = C(m)(\sinh Hz)^{-1} \Big(P_{i\gamma - 1/2}(\cosh Hz) + \beta(m)Q_{i\gamma - 1/2}(\cosh Hz) \Big),$$

$$\gamma = \sqrt{\frac{m^2}{H^2} - \frac{9}{4}}, \quad \beta(m) = -\frac{P_{i\gamma-1/2}(\cosh Hz_0)}{Q_{i\gamma-1/2}(\cosh Hz_0)}$$

C(m) is determined by the normalization condition,

$$2\int_{z_0}^{\infty} d(Hz) \, e^{-3W} u_m(z) u_{m'}^*(z) = \delta(\gamma' - \gamma)$$

a

S
$$C(m) = \left(\frac{H}{\mu}\right)^{3/2} \frac{1}{\sqrt{\varsigma(m) + \xi(m)}},$$
$$\varsigma(m) = \left|\frac{\Gamma(i\gamma)}{\Gamma(i\gamma + 1/2)}\right|^2, \ \xi(m) = \left|\frac{\Gamma(-i\gamma)}{\Gamma(-i\gamma + 1/2)} + \pi\beta(m)\frac{\Gamma(i\gamma + 1/2)}{\Gamma(i\gamma + 1)}\right|^2$$

4.Quantum graviton with vacuum brane

The time mode function is normalized so that the correct canonical quantization is ensured.

$$v_m(z) = \frac{\sqrt{3\kappa^2}}{-k^2} \frac{\sqrt{\pi}}{2} (-H\eta)^{-3/2} e^{-\gamma\pi/2} H_{i\gamma}^{(1)}(-k\eta)$$

The energy density of $\frac{\delta E_{\mu\nu}}{\kappa_4^2 \delta \rho_E} = \frac{k^4 e^{-5\alpha}}{3} \Omega$ is given in terms of the master

We define its power spectrum $P_E(k)$ normalized by ρ_{Λ} .

$$\frac{\left<\delta\rho_E^2\right>}{\rho_\Lambda^2} = \int \frac{dk}{k} P_E(k)$$

$$P_{E}(k) = \frac{1}{108\pi^{2}} \left(\frac{k e^{-\alpha}}{H}\right)^{7} (\kappa_{4} H)^{2} C_{KK}^{2}$$

The amplitude C_{KK} is enhanced For large H/µ as expected.

5. Scalar field on the brane **Equation of motion for scalar perturbations** Koyama, Langlois, Maartens, Wands AdS bulk Master variable $\delta\phi = \delta\phi_0 + \varepsilon\delta\phi_1$ $\delta E_{\mu\nu}$ metric perturbation slow roll parameter

$$\delta\ddot{\phi}_0 + 3H\delta\dot{\phi}_0 + k^2 a^{-2}\delta\phi_0 = 0$$

$$\delta\phi_0 = \frac{C_1}{-k\eta} \left(-ik - \frac{1}{\eta}\right) e^{-ik\eta}$$

C₁ ; normalization constant

Equation of motion for scalar perturbations

Koyama, Langlois, Maartens, Wands

solution with $\delta \phi_0$ on the brane

$$\Omega = C_1 \sqrt{2\pi} \sum_{l=0}^{\infty} (-1)^l \left(2l + \frac{1}{2} \right) \frac{(\sinh Hz)^{-1} Q_{2l} (\cosh Hz)}{\mu Q_{2l}^1 (\cosh Hz_0)} (-k\eta)^{-3/2} J_{2l+1/2} (-k\eta)$$
$$+ i C_1 \sqrt{2\pi} \sum_{l=0}^{\infty} (-1)^l \left(2l + \frac{3}{2} \right) \frac{(\sinh Hz)^{-1} Q_{2l+1} (\cosh Hz)}{\mu Q_{2l+1}^1 (\cosh Hz_0)} (-k\eta)^{-3/2} J_{2l+3/2} (-k\eta)$$

This solution is composed of m²=2H² mode, zero-mode, and infinite ladder of discrete tachyonic modes. (They are normalizable in this case.)

Evolution equation of Q

$$\delta \ddot{\phi}_1 + 3H\delta \dot{\phi}_1 + k^2 a^{-2} \delta \phi_1 = -V'' \delta \phi_0 - 3\dot{\phi} \dot{\Psi} + \dot{\phi} \dot{\Phi} - 2V' \Phi$$

Einstein eq. on the brane

$$\ddot{Q}_{1} + 3H\dot{Q}_{1} + k^{2}a^{-2}Q_{1} = -m_{eff}^{2}Q_{0} + J$$

$$\begin{pmatrix} Q_{1} = \delta\phi_{1} - \frac{\dot{\phi}}{H}\Psi, & m_{eff}^{2} = V'' + 6\dot{H} \end{pmatrix}$$

 $J = -\frac{\dot{\phi}}{H} \frac{k^2}{6a^3} \left(\ddot{\Omega} - H\dot{\Omega} + \frac{k^2}{a^2} \Omega \right) \quad \text{.... bulk perturbations}$

To address the quantization of Q, we need the second order action for Q coupled to bulk perturbations.

We add the action of the scalar field.

$$S = \int d^5 x \sqrt{-g_5} \left(\frac{1}{2\kappa^2} R - \Lambda_5 \right) - \int d^4 x \sqrt{-g_4} \left(\sigma - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right)$$

$$S = \int d^{5}x \frac{e^{-3\alpha - 3W}}{6\kappa^{2}} \left[\left(\Delta \dot{\Omega} \right)^{2} - \left(\Delta \Omega' \right)^{2} + e^{-2\alpha} \Delta \Omega \Delta^{2} \Omega + \mu^{2} e^{2W} \left(\Delta \Omega \right)^{2} \right]$$

+
$$\int d^{4}x \frac{e^{\alpha}}{6\kappa^{2}} \left[-\frac{9}{2} W' \dot{F}^{2} + \frac{3}{2} W' e^{-2\alpha} F \Delta F + W' e^{-4\alpha} \left(\Delta \Omega \right)^{2} \right]$$

+
$$\frac{1}{2} \int d^{4}x e^{3\alpha} \left[\delta \dot{\phi}^{2} + e^{-2\alpha} \delta \phi \Delta \delta \phi - V'' \delta \phi^{2} + 2W' F \left(2 \dot{\phi} \delta \dot{\phi} - V' \delta \phi \right) \right]$$

+
$$\dot{\phi} \delta \dot{\phi} \left(\ddot{\Omega} - 5H \dot{\Omega} + 4H^{2} \Omega - \frac{5}{3} e^{-2\alpha} \Delta \Omega \right) + V' \delta \phi \left(\ddot{\Omega} + H \dot{\Omega} - 2H^{2} \Omega + \frac{1}{3} e^{-2\alpha} \Delta \Omega \right) \right]$$

$$\Omega, F, \delta \phi \qquad F \equiv \Omega' - W' \Omega$$

Action of Q (main result)

$$S = \int d^{5}x \frac{e^{-3\alpha - 3W}}{6\kappa^{2}} \left[\left(\Delta \dot{\Omega} \right)^{2} - \left(\Delta \Omega' \right)^{2} + e^{-2\alpha} \Delta \Omega \Delta^{2} \Omega + \mu^{2} e^{2W} \left(\Delta \Omega \right)^{2} \right]$$
$$+ \int d^{4}x \frac{e^{3\alpha}}{2} \left[\dot{Q}^{2} + e^{-2\alpha} Q \Delta Q - (V'' + 6\dot{H}) Q^{2} - \frac{W' e^{-6\alpha}}{3\kappa^{2}} \left(\Delta \Omega \right)^{2} \right]$$
$$+ \frac{\dot{\phi} e^{-3\alpha}}{3H} Q \Delta \left(\ddot{\Omega} - H\dot{\Omega} - e^{-2\alpha} \Delta \Omega \right)$$

two scalar field Q (on the brane) Ω (in the bulk) They are coupled to each other on the brane.

Calculation of $\langle Q^2 \rangle$

In general, it is difficult to quantize this coupled system.

$$S = \int d^{5}x \frac{e^{-3\alpha - 3W}}{6\kappa^{2}} \left[\left(\Delta \dot{\Omega} \right)^{2} - \left(\Delta \Omega' \right)^{2} + e^{-2\alpha} \Delta \Omega \Delta^{2} \Omega + \mu^{2} e^{2W} \left(\Delta \Omega \right)^{2} \right]$$
$$+ \int d^{4}x \frac{e^{3\alpha}}{2} \left[\dot{Q}^{2} + e^{-2\alpha} Q \Delta Q - (V'' + 6\dot{H}) Q^{2} - \frac{W' e^{-6\alpha}}{3\kappa^{2}} \left(\Delta \Omega \right)^{2} \right]$$
$$+ \frac{\dot{\phi} e^{-3\alpha}}{3H} Q \Delta \left(\ddot{\Omega} - H \dot{\Omega} - e^{-2\alpha} \Delta \Omega \right) \right]$$

suppressed *—* **→** solve the eqs. perturbatively

At 0-th order,
$$Q_0 = \delta \phi_0$$
 decouples.

$$C_1 = \kappa^2 \frac{i\dot{\phi}}{\sqrt{2k}H} \qquad \delta\phi_0 = \frac{C_1}{-k\eta} \left(-ik - \frac{1}{\eta}\right) e^{-ik\eta}$$

To quantize Q_1 , we have to determine including the normalization, and then solve Q_1 . $J = -\frac{\dot{\phi}}{H} \frac{k^2}{6a^3} \left(\ddot{\Omega} - H\dot{\Omega} + \frac{k^2}{a^2}\Omega\right)$

$$\Omega = C_{1} \sqrt{2\pi} \sum_{l=0}^{\infty} (-1)^{l} \left(2l + \frac{1}{2} \right) \frac{(\sinh Hz)^{-1} Q_{2l} (\cosh Hz)}{\mu Q_{2l}^{1} (\cosh Hz_{0})} (-k\eta)^{-3/2} J_{2l+1/2} (-k\eta) + \frac{iC_{1}}{2\pi} \sqrt{2\pi} \sum_{l=0}^{\infty} (-1)^{l} \left(2l + \frac{3}{2} \right) \frac{(\sinh Hz)^{-1} Q_{2l+1} (\cosh Hz)}{\mu Q_{2l+1}^{1} (\cosh Hz_{0})} (-k\eta)^{-3/2} J_{2l+3/2} (-k\eta)$$

$$C_1 = \kappa^2 \frac{i\dot{\phi}}{\sqrt{2k}H}$$

The normalization of the light modes which compose the solution of f is determined by that of Q_0 , because they are related through the junction condition.

using our result

From these results, the correction term J can be determined including its normalization.

Calculation of
$$\langle Q^2 \rangle$$

6. Summary

6. Summary

Motivation We want to compute the amplitude of scalar pert. eonsidering the coupling between the bulk pert. and the inflaton field.

'action of with a vacuum brane • action of Q coupled to

> essential feature of scalar pert. in the brane world

