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1. Introduction

We want to determine the initial condition of
cosmological perturbations in brane-world inflation

_'Randall-Sundrum model + 4D scalar field

INf

lato

AdS bulk

Maartens, Wands, Bassett, Heard

amplitude of scalar perturbations

Mukhanov-Sasaki variable
In extreme slow-roll limit (¢ - 0)

(no coupling between inflaton
and bulk perturbations)



1. Introduction

However, at first order in €

bulk perturbations — scalar field fluctuation
+ correction

Koyama, Langlois, Maartens, Wands

/ To compute amplitude of Q
at this order
= e
Quantum theory of bulk

Inflato gravitational field as well as
AdS bulk inflaton field on the brane




1. Introduction

For 5D vacuum spacetime
...physical degree of freedom for scalar perturbation = 1

- !

Master variable in AdS

Mukohyama
Kodama, Ishibashi, Seto

~— To perform quantization of bulk
~— perturbations, we need action of Q .

~

‘ Contents of this talk ‘

A

AdS bulk action of Q with vacuum brane
action of Q coupled to Q
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Set up (RS brane-world)

K
IIENVAD]  the curvature scale of AdS
the tension of the brane

1 where

L, =V, —§8ﬂ¢ 0“p+V (@)

In zero-th order of € , spacetime of the brane
IS de Sitter.

trace of the extrinsic curvature of the brane




2. Background
Background

_i_de Sitter brane in AdS bulk

—dt* +e**g; dx'dx! + dz*

conformal

ea(t) _ th scale factor bulk-coordinate

location of the brane
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3. Master variable

‘ Introduction of Q ‘

_QE..erturbed metric 5D longitudinal gauge
ds? = 2@~ (1+ 20)dt? + 2O (1+ 2%) 5, dx'dx

+2Sdtdz + (1+ 2N )dz?)

These metric variables satisfy the three constraint

equations which are parts of the Einstein equations.
N+Dd+Y =0,

—D'-29'+3W' N —%(s +HS)=0,

—N +HN —2‘1'1+2HCD+%(S'+3\N'S):O.




3. Master variable

- —-a-3W
Thgsg constraints are R (29” LA+ O %™ Q)
satisfied if we write the 6 |
metric variables using Bl e M (Y -W Q)
a—-3W

h ‘master variabl - )
t aster variable e ( ,,_aN,Q,JrZQJrﬂzezWQ)

N =
as follows.
e—a—&N

v = Q" -G-24%70)

Using these expressions, A"
we can show that (5)
the remaining parts of  JEREANYANNSRERIIE W
the Einstein eq. are

equivalent to AES) -W* A(S) 0

~W'Alg) —

=e*|Q-3HQ - (Q"-3W'Q')-

A(S)



3. Master variable

A replacement of Q with
@_c}ioes not alter
the metric variables.

—a—3W

QZQ_iA LP:e“G (Q”—Q—ZyzeZWQ)

k2 (S)?

A, = €% [Q—3HO - (Q"-3N' Q) - %™ Q —e 2*AQ]

And also, we can set A(S) =308] by this replacement.

satisfy the perturbed Einstein equations.



3. Master variable
In summary,

olution

e—a—3VV

o= (20w + O - 4% Q)

S=e " (QY-WOQ)
N = (o 204 pe™ o)
- e
o3V

¥= Q" -G-24%2"0)

where [@)is a solution of the master eq.

Q-3HQ-(Q"-3WQ')-e**AQ - 1™ Q=0




3. Master variable
General Solution [oF= Idgk dmv_(t)u_(z) e**

W =3V, +[m2+ g2 u

H2

———+—H
4sinh“Hz 4 KK continuum

2
v Non-normalizable
m<EH

(for vacuum brane)

V(z)=-

brane



: 3. Master variable
second order action

2

025 = j‘ d°x - {(Aﬁ)z - (Aﬁ')z +e 22 AQN2Q + 11%e? (Aﬁﬂ

oK

+[d*x e PWFZ—gW'e‘Z“FAF —W’e“‘“(Afz)z—Se‘Z“IfA(Q—ﬁ)}

6’| 2

This action contains higher derivative terms (time).
guantization —» up to second derivatives

> cot [y



_ 3. Master variable
second order action

9 3

EW F? —EW e FAF +We™ (AQ)Z}

Q-3HQ-(Q"-3WQ')-e*AQ - 1%e* Q=0

F = junction condition

.

>
This Is consistent with the eq. obtained by
variation with respect to F.
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4. Quantum graviton
with Vacuum brane



4.Quantum graviton with vacuum brane
guantization of heavy modes (m>3H/2)

junction condition

Ju. (2) =C(m)(sinh Hz) (P, _,, (cosh Hz) + B(M)Q,, ,,,(cosh Hz) ),

y= 2 ﬁ(m):_w
H? 4 Q%,-v2(cosh Hz,)

C(m) is determined by the normalization condition,

2 rod (Hz) e*u, (2)u,.(2) = 5(y'~y)

(2]

1) Jg(m)+é&m)
6 | | TCID |, o Dy +1/2

g(m) = = — .
(iy+1/2) T(=iy+1/2) T(iy+1)




4.Quantum graviton with vacuum brane

The time mode function is normalized so that the correct
canonical guantization is ensured.

We define its power spectrum P¢(k) normalized by .
pe
< P > = J-% P (k)

2

The amplitude C, . Is enhanced
For large H/p as expected.
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_ 5. Scalar field on
the brane



5. Scalar field on the brane

Equation of motion for scalar perturbations

Koyama, Langlois, Maartens, Wands

.\ AdS bulk
ﬁ . \ES CTRVETEET] [

0P = 0y + 6‘5¢1 metric perturbation )

. slow| roll parameter

S, +3HOg, +k*a 254, =0

C, ; normalization constant



5. Scalar field on the brane

Equation of motion for scalar perturbations

Koyama, Langlois, Maartens, Wands

_solution with B on the brane

Q=c1@i<—1)'(2| +§jw<—km3’ﬁm<—kn)

H le (COSh Hzo)

. SN 3)(sinhHz)"Q,,,(coshHz) , 4, L

H—2+g H 2
4sinh? Hz 4 This solution is composed of
m?=2H2? mode, zero-mode,
and infinite ladder of discrete
tachyonic modes.

They are normalizable in this

case.

V(z)=-




5. Scalar field on the brane
Evolution equation of Q

op, +3Hop, +k*a26p, = V"¢, — 3¢¥ + gD — V'

Q,+3HQ, +k’a”Q, =-m3%Q,+J

Einstein eq. on
the brane

(Q1=5¢1—% , mZ =v"+6H]

bulk perturbations

- T0 address the quantization of Q, we need the
second order action for Q coupled to bulk
perturbations.



5. Scalar field on the brane
We add the action of the scalar field.

—%WF’ i +§W e “FAF +We ™ (AQ)Z}

+ o [d e [0 + e apnap-v "ot + W' F(2g8p -V 5p)

+¢55¢5(Q—5HQ+4H Zg—geZ“AQj+V'5¢(Q+ HQ - 2H 2@+ée2“mﬂ




5. Scalar field on the brane
Action of Q (main result)

5 g % 2 -2 2 2 2W 2
S = [d° [(AQ) —(AQY P+ AQAQ + y (AQ)]

2

6Kk
eSa ) W le—6a
2

+28 oala-Ho —eZ“AQ)}

+[d*x Q7 +eQAQ - (V"+6H)Q? - L7 (80

3H
Q,+3HQ, +k*a?Q,=-m3Q, +J

[Q1:5¢1—%R, M3 :V”+6I—'Ij

two scalar field E (on the brane) (in the bulk)
They are coupled to each other on the brane.



5. Scalar field on the brane
Calculation of [{o8¥

In general It is difficult to quantize this coupled system.

S = [d° [ (AQY + e AQAQ + 1% (AQ)2]

3a —6a
. . W'e

+[d*x° : [Q +eQAQ - (V"+6H)Q? —— ()

¥ @:a AA(Q-HO- ez"‘AQ)}

suppressed ——» solve the egs. perturbatively

At 0-th order, decouples.




5. Scalar field on the brane

To quantize , we have to determine g
irjluding the normalization, and then

(SI nH2)™Q, (cosHz)

—K _3/2‘]2I+]JZ —K
1O (costHz) (k) (—kn)

(k) ™* Jas22(K17)

3 '(z +_j (sintH2™Q,,,(costH2)
2)  uQy,(costHz)

The normalization of the light modes which compose the
solution of Q Is determined by that of Q,, because they
are related through the junction condition.



5. Scalar field on the brane

There are also contributions to H 2 9
_from heavy modes with V(Z)=-

m>3H/2 which satisfy vacuum

boundary condition (F=0).

1

action of Q with vacuum brane
(in our paper) 0

2

S
4sinh°Hz 4

brane

From these results, the correction term J can be determined
Including its normalization.

Calculation of <Q2> using our result
—p future work
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6. Summary

Motivation
We want to compute the amplitude of scalar pert.
epnsidering the coupling between the bulk pert.
and the inflaton field.

!

action of Q with a vacuum brane
action of Q coupled to Q

essential feature of scalar pert. in the
brane world

Calculation of <Q2> using this action
— future work END



