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1. Introduction



1. Introduction

Randall-Sundrum model + 4D scalar field

amplitude of scalar perturbations

Maartens, Wands, Bassett, Heard


inflaton in extreme slow-roll limit (ε→0)
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Mukhanov-Sasaki variable

AdS bulk

We want to determine the initial condition of
cosmological perturbations in brane-world inflation

(no coupling between inflaton
and bulk perturbations)



1. Introduction


inflaton

AdS bulk

bulk perturbations

However, at first order in ε

scalar field fluctuation
correction

To compute amplitude of Q 
at this order

Quantum theory of bulk 
gravitational field as well as
inflaton field on the brane

Koyama, Langlois, Maartens, Wands





AdS bulk



For 5D vacuum spacetime
…physical degree of freedom for scalar perturbation = 1

Mukohyama

Master variable in AdS

Contents of this talk

・action of Ω with vacuum brane
・action of Q coupled to Ω

1. Introduction

To perform quantization of bulk
perturbations, we need action of Ω.

Kodama, Ishibashi, Seto



2. Background
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Set up (RS brane-world)
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In zero-th order of ε,  spacetime of the brane
is de Sitter. 

2. Background
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the tension of the brane

trace of the extrinsic curvature of the braneK
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0z location of the brane

de Sitter brane in AdS bulk

conformal 
bulk-coordinatescale factor



3. Master variable



Perturbed metric（5D longitudinal gauge）
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3. Master variable
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Introduction of Ω

These metric variables satisfy the three constraint
equations which are parts of the Einstein equations.
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where

These constraints are
satisfied if we write the
metric variables using
the master variable 
as follows.

Using these expressions,
we can show that
the remaining parts of
the Einstein eq. are
equivalent to
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3. Master variable
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satisfy the perturbed Einstein equations.

A replacement of Ω with
does not alter

the metric variables.

And also, we can set                        by this replacement.

3. Master variable
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In summary,

where       is a solution of the master eq. 

solution
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3. Master variable
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General Solution
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Bessel

Legendre
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KK continuum

Non-normalizable
(for vacuum brane)
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3. Master variable



second order action
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 WF

This action contains higher derivative terms (time).
quantization        up to second derivatives

set 0)(  S

3. Master variable
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second order action
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junction condition

 WFvariation with respect to Ω

3. Master variable

This is consistent with the eq. obtained by
variation with respect to F.



4. Quantum graviton
with Vacuum brane



quantization of heavy modes (m>3H/2)
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0F junction condition

4.Quantum graviton with vacuum brane

C(m) is determined by the normalization condition,
)'()()()(2 *

'
3

0

 

 zuzueHzd mm
W

z

22

2/3

)1(
)2/1()(

)2/1(
)()(,

)2/1(
)()(

,
)()(

1)(



































i
im

i
im

i
im

mm
HmCas



The time mode function is normalized so that the correct
canonical quantization is ensured.
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The energy density of           is given in terms of the master
variable by                            
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We define its power spectrum PE(k) normalized by      . 
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 The amplitude CKK is enhanced
For large H/μ as expected.

4.Quantum graviton with vacuum brane



5. Scalar field on
the brane



Equation of motion for scalar perturbations

Master variable

10  
E

AdS bulk

metric perturbation
 slow roll parameter

5. Scalar field on the brane
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Koyama, Langlois, Maartens, Wands
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C1 ; normalization constant
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Equation of motion for scalar perturbations
5. Scalar field on the brane

Koyama, Langlois, Maartens, Wands
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This solution is composed of
m2=2H2 mode, zero-mode,
and infinite ladder of discrete
tachyonic modes.
（They are normalizable in this
case.）

solution with       on the brane0



Evolution equation of Q

……
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bulk perturbations

4D cosmology
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Einstein eq. on
the brane

5. Scalar field on the brane

To address the quantization of Q, we need the
second order action for Q coupled to bulk 
perturbations.
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We add the action of the scalar field.
5. Scalar field on the brane
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Action of Q (main result)
5. Scalar field on the brane

δQ
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They are coupled to each other on the brane.

two scalar field         (on the brane)        (in the bulk)Q
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5. Scalar field on the brane

In general, it is difficult to quantize this coupled system.

suppressed solve the eqs. perturbatively

2QCalculation of        
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At 0-th order, 00 Q decouples.
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5. Scalar field on the brane

The normalization of the light modes which compose the
solution of Ω is determined by that of Q0, because they
are related through the junction condition.
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To quantize       , we have to determine
including the normalization, and then
solve Q1.

1Q 
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5. Scalar field on the brane

2Q
future work

Calculation of using our result

There are also contributions to
Ω from heavy modes with
m>3H/2 which satisfy vacuum
boundary condition (F=0).

action of Ω with vacuum brane
(in our paper)
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From these results, the correction term J can be determined
including its normalization.



6. Summary



6. Summary 

2Q
future work

Calculation of               using this action

Motivation
We want to compute the amplitude of scalar pert.
considering the coupling between the bulk pert.
and the inflaton field.

・action of Ω with a vacuum brane
・action of Q coupled to Ω

essential feature of scalar pert. in the
brane world
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